Skip to main content

A Web Recommendation Technique Based on Probabilistic Latent Semantic Analysis

  • Conference paper
Web Information Systems Engineering – WISE 2005 (WISE 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3806))

Included in the following conference series:

  • 1284 Accesses

Abstract

Web transaction data between Web visitors and Web functionalities usually convey user task-oriented behavior pattern. Mining such type of clickstream data will lead to capture usage pattern information. Nowadays Web usage mining technique has become one of most widely used methods for Web recommendation, which customizes Web content to user-preferred style. Traditional techniques of Web usage mining, such as Web user session or Web page clustering, association rule and frequent navigational path mining can only discover usage pattern explicitly. They, however, cannot reveal the underlying navigational activities and identify the latent relationships that are associated with the patterns among Web users as well as Web pages. In this work, we propose a Web recommendation framework incorporating Web usage mining technique based on Probabilistic Latent Semantic Analysis (PLSA) model. The main advantages of this method are, not only to discover usage-based access pattern, but also to reveal the underlying latent factor as well. With the discovered user access pattern, we then present user more interested content via collaborative recommendation. To validate the effectiveness of proposed approach, we conduct experiments on real world datasets and make comparisons with some existing traditional techniques. The preliminary experimental results demonstrate the usability of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Herlocker, J., et al.: An Algorithmic Framework for Performing Collaborative Filtering. In: Proceedings of the 22nd ACM Conference on Researchand Development in Information Retrieval (SIGIR 1999), Berkeley, CA (1999)

    Google Scholar 

  2. Konstan, J., et al.: Grouplens: Applying Collaborative Filtering to Usenet News. Communications of the ACM 40, 77–87 (1997)

    Article  Google Scholar 

  3. Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating ’Word of Mouth’. In: Proceedings of the Computer-Human Interaction Conference (CHI 1995), Denver, CO (1995)

    Google Scholar 

  4. Han, E., et al.: Hypergraph Based Clustering in High-Dimensional Data Sets: A Summary of Results. IEEE Data Engineering Bulletin 21(1), 15–22 (1998)

    Google Scholar 

  5. Mobasher, B., et al.: Discovery and Evaluation of Aggregate Usage Profiles for Web Personalization. Data Mining and Knowledge Discovery 6(1), 61–82 (2002)

    Article  MathSciNet  Google Scholar 

  6. Perkowitz, M., Etzioni, O.: Adaptive Web Sites: Automatically Synthesizing Web Pages. In: Proceedings of the 15th National Conference on Artificial Intelligence. AAAI, Madison (1998)

    Google Scholar 

  7. Agarwal, R., Aggarwal, C., Prasad, V.: A Tree Projection Algorithm for Generation of Frequent Itemsets. Journal of Parallel and Distributed Computing 61(3), 350–371 (1999)

    Article  Google Scholar 

  8. Agrawal, R., Srikant, R., Bocca, J.B., Jarke, M., Zaniolo, C.: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB). Morgan Kaufmann, Santiago (1994)

    Google Scholar 

  9. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proceedings of the International Conference on Data Engineering (ICDE). IEEE Computer Society Press, Taipei (1995)

    Google Scholar 

  10. Joachims, T., Freitag, D., Mitchell, T.: Webwatcher: A tour guide for the world wide web. In: The 15th International Joint Conference on Artificial Intelligence (ICJAI 1997), Nagoya, Japan (1997)

    Google Scholar 

  11. Lieberman, H.: Letizia: An agent that assists web browsing. In: Proc. of the 1995 International Joint Conference on Artificial Intelligence. Morgan Kaufmann, Montreal (1995)

    Google Scholar 

  12. Mobasher, B., Cooley, R., Srivastava, J.: Creating adaptive web sites through usage-based clustering of URLs. In: Proceedings of the 1999 Workshop on Knowledge and Data Engineering Exchange. IEEE Computer Society, Los Alamitos (1999)

    Google Scholar 

  13. Ngu, D.S.W., Wu, X.: Sitehelper: A localized agent that helps incremental exploration of the world wide web. In: Proceedings of 6th International World Wide Web Conference. ACM Press, Santa Clara (1997)

    Google Scholar 

  14. Herlocker, J.L., et al.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS) 22(1), 5–53 (2004)

    Article  Google Scholar 

  15. Dunja, M.: Personal Web Watcher: design and implementation, Department of Intelligent Systems, J. Stefan Institute, Slovenia (1996)

    Google Scholar 

  16. Joachims, T., Freitag, D., Mitchell, T.: WebWatcher: A Tour Guide for the World Wide Web. In: Proceedings of the International Joint Conference in AI (IJCAI 1997), Los Angeles (1997)

    Google Scholar 

  17. Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval. Addison Wesley, Sydney (1999)

    Google Scholar 

  18. Deerwester, S., et al.: Indexing by latent semantic analysis. Journal American Society for information retrieval 41(6), 391–407 (1990)

    Article  Google Scholar 

  19. Dumais, S.T.: Latent semantic indexing (LSI): Trec-3 report. In: Proceeding of the Text REtrieval Conference, TREC-3 (1995)

    Google Scholar 

  20. Berry, M.W., Dumais, S.T., O’ Brien, G.W.: Using linear algebra for intelligent information retrieval. SIAM Review 37(4), 573–595 (1995), 0146-4833

    Article  MATH  MathSciNet  Google Scholar 

  21. Hou, J., Zhang, Y.: Constructing Good Quality Web Page Communities. In: Proc. of the 13th Australasian Database Conferences (ADC 2002). ACS Inc., Melbourne (2002)

    Google Scholar 

  22. Hou, J., Zhang, Y.: Effectively Finding Relevant Web Pages from Linkage Information. IEEE Trans. Knowl. Data Eng. 15(4), 940–951 (2003)

    Article  Google Scholar 

  23. Xu, G., Zhang, Y., Zhou, X.: A Latent Usage Approach for Clustering Web Transaction and Building User Profile. In: Li, X., Wang, S., Dong, Z.Y. (eds.) ADMA 2005. LNCS (LNAI), vol. 3584, pp. 31–42. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Hofmann, T.: Probabilistic Latent Semantic Analysis. In: Proc. of the 22nd Annual ACM Conference on Research and Development in Information Retrieval. ACM Press, Berkeley (1999)

    Google Scholar 

  25. Hofmann, T.: Latent Semantic Models for Collaborative Filtering. ACM Transactions on Information Systems 22(1), 89–115 (2004)

    Article  Google Scholar 

  26. Jin, X., Zhou, Y., Mobasher, B.: A Unified Approach to Personalization Based on Probabilistic Latent Semantic Models of Web Usage and Content. In: Proceedings of the AAAI 2004 Workshop on Semantic Web Personalization (SWP 2004), San Jose (2004)

    Google Scholar 

  27. Cohn, D., Chang, H.: Learning to probabilistically identify authoritative documents. In: Proc. of the 17th International Conference on Machine Learning. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  28. Hofmann, T.: Unsupervised Learning by Probabilistic Latent Semantic Analysis. Machine Learning Journal 42(1), 177–196 (2001)

    Article  MATH  Google Scholar 

  29. Cohn, D., Hofmann, T.: The missing link: A probabilistic model of document content and hypertext connectivity. In: Todd, T.G.D., Leen, K. (eds.) Advances in Neural Information Processing Systems. MIT Press, Cambridge (2001)

    Google Scholar 

  30. Shahabi, C., et al.: Knowledge discovery from user web-page navigational. In: Proceedings of the 7th International Workshop on Research Issues in Data Engineering (RIDE 1997). IEEE Computer Society, Los Alamitos (1997)

    Google Scholar 

  31. Xiao, J., et al.: Measuring similarity of interests for clustering web-users. In: Proceedings of the 12th Australasian Database conference (ADC 2001). ACS Inc., Queensland (2001)

    Google Scholar 

  32. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal Royal Statist. Soc. B 39(2), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  33. Xu, G., et al.: Discovering User Access Pattern Based on Probabilistic Latent Factor Model. In: Proceeding of 16th Australasian Database Conference. ACS Inc., Newcastle (2004)

    Google Scholar 

  34. Xu, G., Zhang, Y., Zhou, X.: Using Probabilistic Semantic Latent Analysis for Web Page Grouping. In: 15th International Workshop on Research Issues on Data Engineering: Stream Data Mining and Applications (RIDE-SDMA 2005), Tyoko, Japan (2005)

    Google Scholar 

  35. Mobasher, B.: Web Usage Mining and Personalization. In: Singh, M.P. (ed.) Practical Handbook of Internet Computing. CRC Press, Boca Raton (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, G., Zhang, Y., Zhou, X. (2005). A Web Recommendation Technique Based on Probabilistic Latent Semantic Analysis. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, JY., Sheng, Q.Z. (eds) Web Information Systems Engineering – WISE 2005. WISE 2005. Lecture Notes in Computer Science, vol 3806. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11581062_2

Download citation

  • DOI: https://doi.org/10.1007/11581062_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30017-5

  • Online ISBN: 978-3-540-32286-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics