Skip to main content

Total Variation Minimization and a Class of Binary MRF Models

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3757))

  • 2875 Accesses

Abstract

We observe that there is a strong connection between a whole class of simple binary MRF energies and the Rudin-Osher-Fatemi (ROF) Total Variation minimization approach to image denoising. We show, more precisely, that solutions to binary MRFs can be found by minimizing an appropriate ROF problem, and vice-versa. This leads to new algorithms. We then compare the efficiency of various algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alter, F., Caselles, V., Chambolle, A.: A characterization of convex calibrable sets in ℝN. Math. Ann. 332(2), 329–366 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alter, F., Caselles, V., Chambolle, A.: Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow. Interfaces Free Bound. 7(1), 29–53 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bell, W.: A C++ implementation of a Max Flow-Graph Cut algorithm. Computer Science Dept., Cornell University (November 2001), available at http://www.cs.cornell.edu/vision/wbell/

  4. Bouchitté, G.: Recent convexity arguments in the calculus of variations. In: Lecture Notes from the 3rd Int. Summer School on the Calculus of Variations, Pisa (1998)

    Google Scholar 

  5. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  6. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. In: International Conference on Computer Vision, September 1999, pp. 377–384 (1999)

    Google Scholar 

  7. Caselles, V., Chambolle, A.: Anisotropic curvature-driven flow of convex sets. Technical Report 528, CMAP, Ecole Polytechnique (2004)

    Google Scholar 

  8. Chambolle, A.: An algorithm for mean curvature motion. Interfaces Free Bound 6(2), 195–218 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20(1-2), 89–97 (2004); Special issue on mathematics and image analysis

    MathSciNet  Google Scholar 

  10. Chan, T.F., Esedoglu, S.: Aspects of total variation regularized L1 function approximation. Technical Report 04-07, UCLA CAM (February 2004)

    Google Scholar 

  11. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. Technical Report 04-54, UCLA CAM (September 2004)

    Google Scholar 

  12. Darbon, J., Sigelle, M.: Exact optimization of discrete constrained total variation minimization problems. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 548–557. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Darbon, J., Sigelle, M.: A fast and exact algorithm for total variation minimization. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 351–359. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary images. J. R. Statist. Soc. B 51, 271–279 (1989)

    Google Scholar 

  15. Ishikawa, H.: Exact optimization for Markov random fields with convex priors. IEEE Trans. Pattern Analysis and Machine Intelligence 25(10), 1333–1336 (2003)

    Article  Google Scholar 

  16. Ishikawa, H., Geiger, D.: Segmentation by grouping junctions. In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 125–131 (1998)

    Google Scholar 

  17. Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: European Conference on Computer Vision, May 2002, vol. 3, pp. 82–96 (2002)

    Google Scholar 

  18. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Analysis and Machine Intelligence 2(26), 147–159 (2004)

    Article  Google Scholar 

  19. Paris, S., Sillion, F., Quan, L.: A surface reconstruction method using global graph cut optimization. International Journal of Computer Vision (2005) (to appear)

    Google Scholar 

  20. Poggi, G., Ragozini, A.R.P.: Image segmentation by tree-structured Markov random fields. IEEE Signal Processing Letters 6, 155–157 (1999)

    Article  Google Scholar 

  21. Rivera, M., Gee, J.C.: Two-level MRF models for image restoration and segmentation. In: Proc. British Machine Vision Conference, London, September 2004, vol. 2, pp. 809–818 (2004)

    Google Scholar 

  22. Roy, S., Cox, I.J.: A maximum-flow formulation of the n-camera stereo correspondence problem. In: ICCV, pp. 492–502 (1998)

    Google Scholar 

  23. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  24. Scarpa, G., Poggi, G., Zerubia, J.: A binary tree-structured MRF model for multispectral satellite image segmentation. Rapport de recherche RR-5062, INRIA Sophia Antipolis (December 2003)

    Google Scholar 

  25. Zalesky, B.A.: Network flow optimization for restoration of images. J. Appl. Math. 2(4), 199–218 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chambolle, A. (2005). Total Variation Minimization and a Class of Binary MRF Models. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_10

Download citation

  • DOI: https://doi.org/10.1007/11585978_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30287-2

  • Online ISBN: 978-3-540-32098-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics