Abstract
We observe that there is a strong connection between a whole class of simple binary MRF energies and the Rudin-Osher-Fatemi (ROF) Total Variation minimization approach to image denoising. We show, more precisely, that solutions to binary MRFs can be found by minimizing an appropriate ROF problem, and vice-versa. This leads to new algorithms. We then compare the efficiency of various algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alter, F., Caselles, V., Chambolle, A.: A characterization of convex calibrable sets in ℝN. Math. Ann. 332(2), 329–366 (2005)
Alter, F., Caselles, V., Chambolle, A.: Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow. Interfaces Free Bound. 7(1), 29–53 (2005)
Bell, W.: A C++ implementation of a Max Flow-Graph Cut algorithm. Computer Science Dept., Cornell University (November 2001), available at http://www.cs.cornell.edu/vision/wbell/
Bouchitté, G.: Recent convexity arguments in the calculus of variations. In: Lecture Notes from the 3rd Int. Summer School on the Calculus of Variations, Pisa (1998)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. In: International Conference on Computer Vision, September 1999, pp. 377–384 (1999)
Caselles, V., Chambolle, A.: Anisotropic curvature-driven flow of convex sets. Technical Report 528, CMAP, Ecole Polytechnique (2004)
Chambolle, A.: An algorithm for mean curvature motion. Interfaces Free Bound 6(2), 195–218 (2004)
Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20(1-2), 89–97 (2004); Special issue on mathematics and image analysis
Chan, T.F., Esedoglu, S.: Aspects of total variation regularized L1 function approximation. Technical Report 04-07, UCLA CAM (February 2004)
Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. Technical Report 04-54, UCLA CAM (September 2004)
Darbon, J., Sigelle, M.: Exact optimization of discrete constrained total variation minimization problems. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 548–557. Springer, Heidelberg (2004)
Darbon, J., Sigelle, M.: A fast and exact algorithm for total variation minimization. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 351–359. Springer, Heidelberg (2005)
Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary images. J. R. Statist. Soc. B 51, 271–279 (1989)
Ishikawa, H.: Exact optimization for Markov random fields with convex priors. IEEE Trans. Pattern Analysis and Machine Intelligence 25(10), 1333–1336 (2003)
Ishikawa, H., Geiger, D.: Segmentation by grouping junctions. In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 125–131 (1998)
Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: European Conference on Computer Vision, May 2002, vol. 3, pp. 82–96 (2002)
Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Analysis and Machine Intelligence 2(26), 147–159 (2004)
Paris, S., Sillion, F., Quan, L.: A surface reconstruction method using global graph cut optimization. International Journal of Computer Vision (2005) (to appear)
Poggi, G., Ragozini, A.R.P.: Image segmentation by tree-structured Markov random fields. IEEE Signal Processing Letters 6, 155–157 (1999)
Rivera, M., Gee, J.C.: Two-level MRF models for image restoration and segmentation. In: Proc. British Machine Vision Conference, London, September 2004, vol. 2, pp. 809–818 (2004)
Roy, S., Cox, I.J.: A maximum-flow formulation of the n-camera stereo correspondence problem. In: ICCV, pp. 492–502 (1998)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)
Scarpa, G., Poggi, G., Zerubia, J.: A binary tree-structured MRF model for multispectral satellite image segmentation. Rapport de recherche RR-5062, INRIA Sophia Antipolis (December 2003)
Zalesky, B.A.: Network flow optimization for restoration of images. J. Appl. Math. 2(4), 199–218 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chambolle, A. (2005). Total Variation Minimization and a Class of Binary MRF Models. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_10
Download citation
DOI: https://doi.org/10.1007/11585978_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30287-2
Online ISBN: 978-3-540-32098-2
eBook Packages: Computer ScienceComputer Science (R0)