Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3757))

Abstract

A common approach to the image matching problem is representing images as sets of features in some feature space followed by establishing correspondences among the features. Previous work by Huttenlocher and Ullman [1] shows how a similarity transformation – rotation, translation, and scaling – between two images may be determined assuming that three corresponding image points are known. While robust, such methods suffer from computational inefficiencies for general feature sets. We describe a method whereby the feature sets may be summarized using the stable bounded canonical set (SBCS), thus allowing the efficient computation of point correspondences between large feature sets. We use a notion of stability to influence the set summarization such that stable image features are preferred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huttenlocher, D.P., Ullman, S.: Recognizing solid objects by alignment with an image. International Journal of Computer Vision 5(2), 195–212 (1990)

    Article  Google Scholar 

  2. Lindeberg, T.: Detecting Salient Blob–Like Image Structures and Their Scales With a Scale–Space Primal Sketch—A Method for Focus–of–Attention. IJCV 11, 283–318 (1993)

    Article  Google Scholar 

  3. Bretzner, L., Lindeberg, T.: Qualitative multi-scale feature hierarchies for object tracking. Journal of Visual Communication and Image Representation 11, 115–129 (2000)

    Article  Google Scholar 

  4. Goemans, M.X., Williamson, D.P.: Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. J. Assoc. Comput. Mach. 42, 1115–1145 (1995)

    MATH  MathSciNet  Google Scholar 

  5. Denton, T., Abrahamson, J., Shokoufandeh, A.: Approximation of canonical sets and their application to 2d view simplification. In: CVPR, vol. 2, pp. 550–557 (2004)

    Google Scholar 

  6. Denton, T., Demirci, M.F., Abrahamson, J., Shokoufandeh, A.: Selecting canonical views for view-based 3-d object recognition. In: ICPR, pp. 273–276 (2004)

    Google Scholar 

  7. Cover, T., Thomas, J.: Elements of Information Theory: Rate Distortion Theory. John Wiley & Sons, Chichester (1991)

    Book  MATH  Google Scholar 

  8. Tishby, N., Pereira, F., Bialek, W.: The information bottleneck method. In: Proceedings of the 37-th Annual Allerton Conference on Communication, Control and Computing, pp. 368–377 (1999)

    Google Scholar 

  9. Hermes, L., Zoller, T., Buhmann, J.M.: Parametric distributional clustering for image segmentation. In: Proceedings, European Conference on Computer Vision, pp. 577–591 (2002)

    Google Scholar 

  10. Gordon, S., Greenspan, H., Goldberger, J.: Applying the information bottleneck principle to unsupervised clustering of discrete and continuous image representations. In: Proceedings, International Conference on Computer Vision, Nice, France (2003)

    Google Scholar 

  11. Liu, H., Motoda, H.: Feature transformation and subset selection. IEEE Intelligent Systems 13, 26–28 (1998)

    Google Scholar 

  12. Cyr, C.M., Kimia, B.: 3d object recognition using shape similarity-based aspect graph. In: 8th Inter. Conf. Comp. Vision, pp. 254–261 (2001)

    Google Scholar 

  13. Goemans, M.X., Williamson, D.P.: 878-approximation algorithms for max cut and max 2sat. In: Twenty-sixth Annual ACM Symposium on Theory of Computing, New York, pp. 422–431 (1994)

    Google Scholar 

  14. Goemans, M.X.: Semidefinite programming in combinatorial optimization. Mathematical Programming 79, 143–161 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Mahajan, S., Ramesh, H.: Derandomizing approximation algorithms based on semidefinite programming. SIAM Journal on Computing 28, 1641–1663 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Huttenlocher, D., Ullman, S.: Object recognition using alignment. In: Proceedings, First International Conference on Computer Vision, London, UK, pp. 102–111 (1987)

    Google Scholar 

  17. Huttenlocher, D., Ullman, S.: Recognizing solid objects by alignment with an image. International Journal of Computer Vision 5, 195–212 (1990)

    Article  Google Scholar 

  18. Irani, S., Raghavan, P.: Combinatorial and experimental results for randomized point matching algorithms. In: SCG 1996: Proceedings of the twelfth annual symposium on Computational geometry, pp. 68–77. ACM Press, New York (1996)

    Chapter  Google Scholar 

  19. Ratan, A.L., Grimson, W.E.L., Wells, W.M.I.: Object detection and localization by dynamic template warping. International Journal on Computer Vision 36, 131–147 (2000)

    Article  Google Scholar 

  20. Meer, P., Lenz, R., Ramakrishna, S.: Efficient invariant representations. Int. J. Comput. Vision 26, 137–152 (1998)

    Article  Google Scholar 

  21. Harris, C., Stephens, M.: A combined corner and edge detector. In: 4th ALVEY vision conference, pp. 147–151 (1988)

    Google Scholar 

  22. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. of the International Conference on Computer Vision ICCV, Corfu., pp. 1150–1157 (1999)

    Google Scholar 

  23. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artificial Intelligence 97, 245–271 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Berchtold, S., Böhm, C., Kriegel, H.P.: The pyramid-tree: Breaking the curse of dimensionality. In: Haas, L.M., Tiwary, A. (eds.) SIGMOD 1998, Proceedings ACM SIGMOD International Conference on Management of Data, Seattle, Washington, USA, June 2-4, pp. 142–153. ACM Press, New York (1998)

    Chapter  Google Scholar 

  25. Pagel, B.U., Korn, F., Faloutsos, C.: Deflating the dimensionality curse using multiple fractal dimensions. In: ICDE 2000: Proceedings of the 16th International Conference on Data Engineering, p. 589. IEEE Computer Society, Washington (2000)

    Google Scholar 

  26. Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, San Francisco (ND2,SR1) (1979)

    Google Scholar 

  27. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman and Co., Baltimore (1979)

    MATH  Google Scholar 

  28. Ehrgott, M.: Multicriteria Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 491. Springer, New York (2000)

    MATH  Google Scholar 

  29. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Dordrecht (1999)

    MATH  Google Scholar 

  30. Alizadeh, F.: Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim. 5, 13–51 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  31. Toh, K.C., Todd, M.J., Tutuncu, R.: SDPT3 — a Matlab software package for semidefinite programming. Optimization Methods and Software 11, 545–581 (1999)

    Article  MathSciNet  Google Scholar 

  32. Golub, G., Loan, C.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  33. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library, Coil (1996)

    Google Scholar 

  34. Demirci, M.F., Shokoufandeh, A., Dickinson, S., Keselman, Y., Bretzner, L.: Many-to-many graph feature matching using spherical coding of directed graphs. In: ECCV (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Novatnack, J., Denton, T., Shokoufandeh, A., Bretzner, L. (2005). Stable Bounded Canonical Sets and Image Matching. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_21

Download citation

  • DOI: https://doi.org/10.1007/11585978_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30287-2

  • Online ISBN: 978-3-540-32098-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics