Skip to main content

Abstract

In many biomedical imaging applications, video sequences are captured with low resolution and low contrast challenging conditions in which to detect, segment, or track features. When image deformations have just a few underlying causes, such as continuously captured cardiac MRI without breath-holds or gating, the captured images lie on a low-dimensional, non-linear manifold. The manifold structure of such image sets can be extracted by automated methods for manifold learning. Furthermore, the manifold structure of these images offers new constraints for tracking and segmentation of relevant image regions. We illustrate how to incorporate these new constraints within a snake-based energy minimization approach, and demonstrate improvements in using snakes to segment a set of cardiac MRI images in challenging conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1988)

    Article  Google Scholar 

  2. Cremers, D., Tischhäuser, F., Weickert, J., Schnörr, C.: Diffusion snakes: Introducing statistical shape knowledge into the mumford-shah functional. International Journal of Computer Vision 50, 295–313 (2002)

    Article  MATH  Google Scholar 

  3. Duncan, J.C., Ayache, N.: Medical image analysis: Progress over two decades and the challenges ahead. IEEE Trans. Pattern Anal. Mach. Intell. 22, 85–106 (2000)

    Article  Google Scholar 

  4. Frangi, A.F., Rueckert, D., Duncan, J.S.: Three-dimensional cardiovascular image analysis. IEEE Trans. Med. Imaging 21, 1005–1010 (2002)

    Article  Google Scholar 

  5. McInerney, T., Terzopoulos, D.: Deformable models in medical images analysis: a survey. Medical Image Analysis 1, 91–108 (1996)

    Article  Google Scholar 

  6. Ueda, N., Mase, K.: Tracking moving contours using energy-minimizing elastic contour models. International Journal of Pattern Recognition and Artificial Intelligence 9, 465–484 (1995)

    Article  Google Scholar 

  7. Geiger, D., Gupta, A., Costa, L.A., Vlontzos, J.: Dynamic programming for detecting, tracking, and matching deformable contours. IEEE Trans. Pattern Anal. Mach. Intell. 17, 294–302 (1995)

    Article  Google Scholar 

  8. Xu, C., Prince, J.L.: Gradient vector flow: A new external force for snakes. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, p. 66 (1997)

    Google Scholar 

  9. Xu, C., Prince, J.L.: Generalized gradient vector flow external forces for active contours. Signal Process 71, 131–139 (1998)

    Article  MATH  Google Scholar 

  10. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)

    Google Scholar 

  11. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley and Sons, Chichester (2001)

    Book  MATH  Google Scholar 

  12. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  13. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  14. Weinberger, K.Q., Saul, L.K.: Unsupervised learning of image manifolds by semidefinite programming. Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  15. Pless, R., Simon, I.: Embedding images in non-flat spaces. In: Proc. of the International Conference on Imaging Science, Systems, and Technology (2002)

    Google Scholar 

  16. Donoho, D.L., Grimes, C.: Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. PNAS 100, 5591–5596 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Brand, M.: Charting a manifold. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15, pp. 961–968. MIT Press, Cambridge (2003)

    Google Scholar 

  18. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Information Processing Systems (2002)

    Google Scholar 

  19. Lim, I.S., Ciechomski, P.d.H., Sarni, S., Thalmann, D.: Planar arrangement of high-dimensional biomedical data sets by isomap coordinates. In: Proceedings of the 16th IEEE Symposium on Computer-Based Medical Systems, pp. 50–55 (2003)

    Google Scholar 

  20. Pless, R.: Differential structure in non-linear image embedding functions. Articulated and Nonrigid Motion (2004)

    Google Scholar 

  21. Souvenir, R., Pless, R.: Isomap and non-parametric models of image deformation. In: Proc. IEEE Workshop on Motion and Video Computing, Breckenridge, CO (2005)

    Google Scholar 

  22. Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  23. Dierckx, P.: Curve and surface fitting with splines. Oxford University Press, Inc., New York (1993)

    MATH  Google Scholar 

  24. Paragios, N.: A variational approach for the segmentation of the left ventricle in cardiac image analysis. International Journal of Computer Vision 50, 345–362 (2002)

    Article  MATH  Google Scholar 

  25. Malpicaa, N., Ledesma-Carbayoa, M., Santosa, A., Prezb, E., Garc-Fernandezb, M., Descob, M.: A coupled active contour model for myocardial tracking in contrast echocardiography. In: Image Understanding and Analysis. Imperial College, London (2004)

    Google Scholar 

  26. Zhang, Q., Pless, R.: Segmenting cardiopulmonary images using manifold learning with level sets. In: ICCV workshop on Computer Vision for Biomedical Image Applications: Current Techniques and Future Trends, Beijing, China (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Q., Souvenir, R., Pless, R. (2005). Segmentation Informed by Manifold Learning. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_26

Download citation

  • DOI: https://doi.org/10.1007/11585978_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30287-2

  • Online ISBN: 978-3-540-32098-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics