Skip to main content

Some New Results on Non-rigid Correspondence and Classification of Curves

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3757))

Abstract

We present two new algorithms for correspondence and classification of planar curves in a non-rigid sense. In the first algorithm we define deforming energy based on aligning curves using certain of their properties, namely Multi-Step-Size Local Similarity (MSSLS) and the difference between the angle changes of beginning and ending tangent lines of two corresponding curve segments, as well as local scale of stretching. MSSLS overcomes the noise of local shape information of curves to be aligned. In the second algorithm, we improve the computation of shape context so that it catches the local information of ordered sets representing planar curves better. The optimal correspondence is found by a modified dynamic-programming method. Based on deforming energy, we can do pattern recognition among curves, which is very important in many areas such as recognition of hand-written characters and cardiac curves where rigid transformations and scaling do not work well. Finally, the effect of correspondence and classification is shown in application to hand-written characters and cardiac curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sebastian, T.B., Klein, P.N., Kimia, B.B.: On Aligning Curves. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(1), 116–124 (2003)

    Article  Google Scholar 

  2. Cohen, I., Ayache, N., Sulger, P.: Tracking Points on Deformable Objects Using Curvature Information. In: Proc. European Conf. Computer Vision, pp. 458–466 (1992)

    Google Scholar 

  3. Tagare, H.D.: Shape-Based Non-Rigid Correspondence with Application to Heart Motion Analysis. IEEE Trans. Medical Imaging 18(7), 570–578 (1999)

    Article  Google Scholar 

  4. Basri, R., Costa, L., Geiger, D., Jacobs, D.: Determining the Similarity of Deformable Shapes. Vision Research 38, 2365–2385 (1998)

    Article  Google Scholar 

  5. Younes, L.: Computable Elastic Distance between Shapes. SIAM J. Applied Math. 58, 565–586 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Tagare, H.D., O’Shea, D., Groisser, D.: Non-Rigid Shape Comparison of Plane Curves in Images. J. Mathematical Imaging and Vision 16(1), 57–68 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Belongie, S., Malik, J., Puzicha, J.: Shape Contexts: A New Descriptor for Shape Matching and Object Recognition. NIPS 13, 831–837 (2001)

    Google Scholar 

  8. Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(24), 509–522 (2002)

    Article  Google Scholar 

  9. Frenkel, M., Basri, R.: Curve Matching Using the Fast Marching Method. LNCS, vol. 2683, pp. 35–51. Springer, Heidelberg (2003)

    Google Scholar 

  10. Sethian, J.: A Fast Marching Level Set Method for Monotonically Advancing Fronts. Proc. Nat. Acad. Sci. 93(4), 1591–1595 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rangarajan, A., Chui, H., Mjolsness, E.: A relationship between spline-based deformable models and weighted graphs in non-rigid matching. In: IEEE Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 897–904 (2001)

    Google Scholar 

  12. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. In: Computer Vision and Image Understanding (CVIU), vol. 89, pp. 114–141 (2003)

    Google Scholar 

  13. Marzal, A., Vidal, E.: Computation of Normalized Edit Distances and Applications. IEEE Trans. Pattern Analysis and Machine Intelligence 15, 926–932 (1993)

    Article  Google Scholar 

  14. Sermesant, M., Forest, C., Pennec, X., Delingette, H., Ayache, N.: Deformable biomechanical models: Application to 4D cardiac image analysis. Medical Image Analysis 7(4), 475–488 (2003)

    Article  Google Scholar 

  15. Liu, H.C., Srinath, M.D.: Partial Shape Classification Using Contour Matching in Distance Transformation. IEEE Trans. Pattern Analysis and Machine Intelligence 12(11), 1072–1079 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, X., Chen, Y., Groisser, D., Wilson, D. (2005). Some New Results on Non-rigid Correspondence and Classification of Curves. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_31

Download citation

  • DOI: https://doi.org/10.1007/11585978_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30287-2

  • Online ISBN: 978-3-540-32098-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics