Skip to main content

A New Implicit Method for Surface Segmentation by Minimal Paths: Applications in 3D Medical Images

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2005)

Abstract

We introduce a novel implicit approach for single object segmentation in 3D images. The boundary surface of this object is assumed to contain two known curves (the constraining curves), given by an expert. The aim of our method is to find this surface by exploiting as much as possible the information given in the supplied curves. As for active surfaces, we use a cost potential which penalizes image regions of low interest (most likely areas of low gradient or away from the surface to be extracted). In order to avoid local minima, we introduce a new partial differential equation and use its solution for segmentation. We show that the zero level set of this solution contains the constraining curves as well as a set of paths joining them. These paths globally minimize an energy which is defined from the cost potential. Our approach is in fact an elegant, implicit extension to surfaces of the minimal path framework already known for 2D image segmentation. As for this previous approach, and unlike other variational methods, our method is not prone to local minima traps of the energy. We present a fast implementation which has been successfully applied to 3D medical and synthetic images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrosio, L.: Transport equation and Cauchy problem for BV vector fields. Preprints Scuola Normale Superiore, Department of Mathematics (2003), http://cvgmt.sns.it/people/ambrosio/

  2. Ardon, R., Cohen, L.D.: Fast constrained surface extraction by minimal paths. In: 2nd IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, October 2003, pp. 233–244 (2003)

    Google Scholar 

  3. Ardon, R., Cohen, L.D.: Fast Constrained Surface Extraction by Minimal Paths. To appear in IJCV (2005)

    Google Scholar 

  4. Bouchut, F., James, F., Mancini, S.: Uniqueness and weak stability for multi-dimensional transport equations with one-sided lipschitz coefficient. Prépublications du département Mathématiques et Applications, Physique Mathématique d’Orléans (2004)

    Google Scholar 

  5. Bruckstein, A.M.: On shape from shading. CVGIP 44(2), 139–154 (1988)

    Google Scholar 

  6. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. IJCV 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  7. Caselles, V., Kimmel, R., Sapiro, G., Sbert, C.: Minimal-surfaces based object segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(4), 394–398 (1997)

    Article  MathSciNet  Google Scholar 

  8. Cohen, L.D.: On active contour models and balloons. CVGIP 53(2), 211–218 (1991)

    Article  MATH  Google Scholar 

  9. Cohen, L.D.: Avoiding local minima for deformable curves in image analysis. In: Curves and Surfaces with Applications in CAGD. Vanderbilt Univ. Press, Nashville (1997)

    Google Scholar 

  10. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal path approach. IJCV 24(1), 57–78 (1997)

    Article  Google Scholar 

  11. Crowley, W.P.: Numerical advection experiments. Monthly Weather Review 96, 1–11 (1968)

    Article  Google Scholar 

  12. Deschamps, T., Cohen, L.D.: Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Medical Image Analysis 5(4) (December 2001)

    Google Scholar 

  13. Gerard, O., Deschamps, T., Greff, M., Cohen, L.D.: Real-time interactive path extraction with on-the-fly adaptation of the external forces. In: European Conference on Computer Vision (June 2002)

    Google Scholar 

  14. Kao, C.Y., Osher, S., Qian, J.: Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations. Journal of Computational Physics 26, 367–391 (2004)

    Article  MathSciNet  Google Scholar 

  15. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  16. Lax, P.D., Wendorff, B.: Systems of conservation laws. Communications on Pure and Applied mathematics 17, 381–398 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  17. LeVeque, R.J.: High-resolution conservative algorithms for advection in incompressible flow. SIAM Journal on Numerical Analysis 33(2), 627–665 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mantegazza, C., Mennucci, A.C.G.: Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Opt. 47(1), 1–25 (2003)

    MathSciNet  Google Scholar 

  19. Paragios, N.: Geodesic Active Regions and Level Set Methods: Contributions and Applications in Artificial Vision. PhD thesis, Université de Nice Sophia-Antipolis, France (2000)

    Google Scholar 

  20. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences 93(4), 1591–1595 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sethian, J.A.: Level set methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Sciences, 2nd edn. Cambridge University Press, University of California, Berkeley (1999)

    Google Scholar 

  22. Smolarkiewicz, P.K.: The multi-dimensional crowley advection scheme. Monthly Weather Review 110, 1968–1983 (1982)

    Article  Google Scholar 

  23. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control 40(9), 1528–1538 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A.: A geometric snake model for segmentation of medical imagery. IEEE Transactions on Medical Imaging 16(2), 199–209 (1997)

    Article  Google Scholar 

  25. Yezzi, A., Prince, J.L.: An Eulerian PDE Approach for Computing Tissue Thickness. IEEE Transactions on Medical Imaging 22, 1332–1339 (2003)

    Article  Google Scholar 

  26. Yuille, A.L., Hallinan, P.W., Cohen, D.S.: Feature extraction from faces using deformable templates. International Journal of Computer Vision 8(2), 99–111 (1992)

    Article  Google Scholar 

  27. Zhu, S.C., Yuille, A.: Region competition: Unifying snakes, region growing, and bayes/mdl for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(9), 884–900 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ardon, R., Cohen, L.D., Yezzi, A. (2005). A New Implicit Method for Surface Segmentation by Minimal Paths: Applications in 3D Medical Images. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_34

Download citation

  • DOI: https://doi.org/10.1007/11585978_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30287-2

  • Online ISBN: 978-3-540-32098-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics