Abstract
The Weil and Tate pairings are defined for elliptic curves over fields, including finite fields. These definitions extend naturally to elliptic curves over ℤ/Nℤ, for any positive integer N, or more generally to elliptic curves over any finite commutative ring, and even the reduced Tate pairing makes sense in this more general setting.
This paper discusses a number of issues which arise if one tries to develop pairing-based cryptosystems on elliptic curves over such rings. We argue that, although it may be possible to develop some cryptosystems in this setting, there are obstacles in adapting many of the main ideas in pairing-based cryptography to elliptic curves over rings.
Our main results are: (i) an oracle that computes reduced Tate pairings over such rings (or even just over ℤ/Nℤ) can be used to factorise integers; and (ii) an oracle that determines whether or not the reduced Tate pairing of two points is trivial can be used to solve the quadratic residuosity problem.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)
Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Crypt 17(4), 297–319 (2004)
Cassels, J.W.S.: Lectures on Elliptic Curves. LMS Student Texts, Cambridge, vol. 24 (1991)
Demytko, N.: A new elliptic curve based analogue of RSA. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 40–49. Springer, Heidelberg (1994)
Frey, G., Rück, H.-G.: A remark concerning m-divisibility and the discrete logarithm problem in the divisor class group of curves. Math. Comp. 52, 865–874 (1994)
Frey, G., Müller, M., Rück, H.-G.: The Tate pairing and the discrete logarithm applied to elliptic curve cryptosystems. IEEE Trans. Inf. Th. 45, 1717–1719 (1999)
Galbraith, S.D.: Elliptic curve Paillier schemes. J. Crypt. 15(2), 129–138 (2002)
Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate pairing. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer, Heidelberg (2002)
Girault, M.: An Identity-Based Identification Scheme Based on Discrete Logarithms Modulo a Composite Number. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 481–486. Springer, Heidelberg (1991)
Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)
Kunihiro, N., Koyama, K.: Equivalence of counting the number of points on elliptic curve over the ring Z_n and factoring n. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 47–58. Springer, Heidelberg (1998)
Koyama, K., Maurer, U.M., Okamoto, T., Vanstone, S.A.: New public-key schemes based on elliptic curves over the ring Z n . In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 252–266. Springer, Heidelberg (1992)
Lenstra Jr., H.W.: Factoring integers with elliptic curves. Annals of Mathematics 126, 649–673 (1987)
Lenstra Jr., H.W.: Elliptic curves and number theoretic algorithms. In: Proc. International Congr. Math., pp. 99–120. AMS, Berkeley (1986/1988)
Lim, C.H., Lee, P.J.: Security and performance of server-aided RSA computation protocols. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 70–83. Springer, Heidelberg (1995)
Mao, W.: Verifiable partial sharing of integer factors. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 94–105. Springer, Heidelberg (1999)
Martin, S., Morillo, P., Villar, J.L.: Computing the order of points on an elliptic curve modulo N is as difficult as factoring N. Applied Math. Letters 14, 341–346 (2001)
McKee, J.F.: Subtleties in the distribution of the numbers of points on elliptic curves over a finite prime field. J. London Math. Soc. (2) 59, 448–460 (1999)
McKee, J.F., Pinch, R.G.E.: Old and new deterministic factoring algorithms. In: Cohen, H. (ed.) ANTS 1996. LNCS, vol. 1122, pp. 217–224. Springer, Heidelberg (1996)
McKee, J.F., Pinch, R.G.E.: Further attacks on server-aided RSA cryptosystems (1998) (unpublished manuscript)
Meyer, B., Mueller, V.: A public key cryptosystem based on elliptic curves over Z /n Z equivalent to factoring. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 49–59. Springer, Heidelberg (1996)
Miller, V.S.: Short programs for functions on curves (1986) (unpublished manuscript)
Miller, V.S.: The Weil pairing, and its efficient calculation. J. Crypt. 17(4), 235–261 (2004)
Okamoto, T., Uchiyama, S.: Security of an identity-based cryptosystem and the related reductions. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 546–560. Springer, Heidelberg (1998)
Pollard, J.M.: A Monte Carlo method for factorisation. BIT 15, 331–334 (1975)
Pollard, J.M.: Monte Carlo methods for index computations (mod p). Math. Comp. 32, 918–924 (1978)
Rabin, M.O.: Digitalized signatures and public-key functions as intractable as factorization, Technical report TR-212. MIT Laboratory for Computer Science (1979)
Scott, M., Barreto, P.S.L.M.: Compressed pairings. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004)
Shanks, D.: Class number, a theory of factorisation and genera. In: Lewis, D.J. (ed.) Number theory institute 1969, Proceedings of symposia in pure mathematics, Providence RI, vol. 20, pp. 415–440. AMS (1971)
Turk, J.W.M.: Fast arithmetic operations on numbers and polynomials. In: Lenstra Jr., H.W., Tijdeman, R. (eds.) Computational methods in number theory, Part 1, Mathematical Centre Tracts, vol. 154, Amsterdam (1984)
Vanstone, S.A., Zuccherato, R.J.: Elliptic curve cryptosystems using curves of smooth order over the ring Z n . IEEE Trans. Inform. Theory 43(4), 1231–1237 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Galbraith, S.D., McKee, J.F. (2005). Pairings on Elliptic Curves over Finite Commutative Rings. In: Smart, N.P. (eds) Cryptography and Coding. Cryptography and Coding 2005. Lecture Notes in Computer Science, vol 3796. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11586821_26
Download citation
DOI: https://doi.org/10.1007/11586821_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30276-6
Online ISBN: 978-3-540-32418-8
eBook Packages: Computer ScienceComputer Science (R0)