
Software Defined Radio – A High Performance
Embedded Challenge

Hyunseok Lee, Yuan Lin, Yoav Harel, Mark Woh, Scott Mahlke,
Trevor Mudge1, and Krisztian Flautner2

1 Advanced Computer Architecture Laboratory,
Electrical Engineering and Computer Science Department,

University of Michigan, 1301 Beal Ave. Ann Arbor, MI 48105-2122
{leehzz, linyz, yoavh, mwoh, mahlke, tnm}@eecs.umich.edu

2 ARM Ltd. 110 Fullbourn Road, Cambridge, UK CB1 9NJ
Krisztian.flautner@arm.com

Abstract. Wireless communication is one of the most computation-
ally demanding workloads. It is performed by mobile terminals (“cell
phones”) and must be accomplished by a small battery powered sys-
tem. An important goal of the wireless industry is to develop hardware
platforms that can support multiple protocols implemented in software
(software defined radio) to support seamless end-user service over a vari-
ety of wireless networks. An equally important goal is to provide higher
and higher data rates. This paper focuses on a study of the wideband
code division multiple access protocol, which is one of the dominant third
generation wireless standards. We have chosen it as a representative pro-
tocol. We provide a detailed analysis of computation and processing re-
quirements of the core algorithms along with the interactions between
the components. The goal of this paper is to describe the computational
characteristics of this protocol to the computer architecture community,
and to provide a high-level analysis of the architectural implications to
illustrate one of the protocols that would need to be accommodated in
a programmable platform for software defined radio. The computation
demands and power limitations of approximately 60 Gops and 100∼300
mW, place extremely challenging goals on such a system. Several of the
key features of wideband code division multiple access protocol that can
be exploited in the architecture include high degrees of vector and task
parallelism, small memory footprints for both data and instructions, lim-
ited need for complex arithmetic functions such as multiplication, and a
highly variable processing load that provides the opportunity to dynam-
ically scale voltage and frequency.

1 Introduction

Hand held wireless devices are becoming pervasive. These devices represent a
convergence of many disparate features, including wireless communication, real-
time multimedia, and interactive applications, into a single platform. One of the
most difficult challenges is to create the embedded computing systems for these

devices that can sustain the needed performance levels, while at the same time
operate within a highly constrained power budget to achieve satisfactory battery
lifetimes. These computing systems need to be capable of supercomputer level
performance levels with estimated performance levels of more than 60 Gops,
while having a total power budget of about 100∼300 mW. The current genera-
tion of microprocessors and DSPs are not capable of meeting these performance
and power requirements. The term “mobile supercomputer” has been used to
describe such platforms [1].

In this work, we focus on the wireless communication aspect of hand held de-
vices. Wireless communication is one of the most computationally intense work-
loads that is driven by the demand for higher and higher data rates. To support
seamless service between various wireless networks, there is a high demand for
a common hardware platform that can support multiple protocols implemented
in software, generally referred to as software defined radio (SDR) [2]. A fun-
damental conflict exists when defining a computing platform for SDR, because
performance, power, and flexibility are conflicting goals. At one extreme, which
maximizes flexibility, are general purpose processors, where algorithms can be
defined in high-level languages. At the other extreme, which maximizes perfor-
mance and minimizes power, are application specific integrated circuits (ASIC).
ASICs are hardwired solutions that offer almost no flexibility, but are the stan-
dard for current platforms.

Our goal, shared by others in the field, is to design and develop a program-
mable “mobile supercomputer” for SDR. It is first necessary to develop an un-
derstanding of the underlying requirements and computation characteristics of
wireless protocols. The majority of the computation occurs at the physical layer
of protocols, where the focus is signal processing. Traditionally, kernels corre-
sponding to the major components, such as filters and decoders, are identi-
fied. Design alternatives for these are then evaluated on workloads targeted to
their specific function. This approach has the advantage of dealing with a small
amount of code. However, we have found that the interaction between tasks in
SDR has a significant impact on the hardware architecture. This occurs because
the physical layer is a combination of algorithms with different complexities and
processing time requirements. For example, high computation tasks that run for
a long period of time can often be disturbed by small tasks. Further, these small
tasks have hard real-time deadlines, thus they must be given high priority. As
a result, we believe it is necessary to explore the whole physical layer operation
with a complete model.

From the many wireless protocols, we have selected the wideband code divi-
sion multiple access (W-CDMA) protocol as a representative wireless workload
to illustrate the operation of wireless communication systems. W-CDMA system
is one of leading third generation wireless communication networks where the
goal is multimedia service including video telephony on a wireless link [3]. W-
CDMA improves over earlier cellular networks by increasing the data rate from
64 Kbps to 2 Mbps. Additionally, W-CDMA unifies a single service link for both
voice and packet data, in contrast to previous generations which support only

one service. In order to study the requirements in more detail, we have developed
a full C implementation of the W-CDMA physical layer to serve as the basis for
our study. The implementation can be executed on a Linux workstation and thus
studied with conventional architectural tools.

In this paper, we provide a detailed description and analysis of the W-CDMA
physical layer. The fundamental computation patterns and processing time re-
quirements of core algorithms are analyzed, along with the interactions between
them. We also study the implications of the processing requirements on poten-
tial architectural decisions. One of the major keys to achieving the challenging
power and performance goals is exploiting parallelism present in the computa-
tion, especially vector and task-level parallelism. This is balanced by a number of
smaller real-time tasks that are more sequential in nature. Thus, it is important
to consider both extremes and define an architecture capable of handling diverse
types of processing.

The design of fully programmable architectures for W-CDMA is a diffi-
cult challenge faced by the industry. To date, no such design exists and thus
serves as motivation for our analysis. Current DSP solutions, such as the TI
TMS320C5XXX, have included specialized instructions, such as a compare-select
instruction, designed specifically for wireless protocols. Further, there are many
announced multiprocessor DSP systems that are designed specially for SDR.
Some examples include the Sandblaster processor [4], the MorphoSys proces-
sor [5], and the 3plus1 processor [6]. However, none has yet to provide a fully
programmable solution that could be programmed for other protocols and that
satisfies both real-time W-CDMA performance requirement as well as being
competitive with ASICs in power consumption. Some of these solutions, like
MorphoSys processors, are aimed at basestations, where the power requirements
are less stringent. To meet the W-CDMA processing requirements, many of these
programmable processors also require ASIC accelerators for the most computa-
tionally demanding portions of the protocol.

2 W-CDMA protocol

LPF-Tx scrambler spreader Interleaver
Channel

encoder

LPF-Rx

searcher

descrambler despreader

c
o

m
b

in
 e

 rdescrambler despreader

...

modulator

demodulator

deinteleaver

Channel

decoder

(turbo/viterbi)

U
p

p
e

 r la
 y
 e

 rs

Transmitter

Receiver

D

/

A

A

/

D

F
ro

n
te

 n
 d

Fig. 1. High level block diagram of the physical layer operation of a W-CDMA terminal

The protocol stack of the W-CDMA system consists of several layers and
each layer provides an unique function in the system. According to the com-
putation characteristics, we can group the protocol layers into two parts: the
physical layer and upper layers. The physical layer, which is placed at the bot-
tom of the protocol stack, is responsible for signal transmission over an unreliable
wireless link. To overcome noise that the environment introduces on the wireless
link, the physical layer performs many computation intensive signal processing
algorithms such as matched filtering and forward error correction. Meanwhile,
upper layer protocols cover the control signaling required to operate within a
wireless network. For example, the medium access control (MAC) layer provides
a scheme for resolving resource contention between multiple terminals.

Although SDR encompasses all protocols layers, we only focus on the physical
layer due to its computation and power importance compared to other layers.
The operation of the physical layer is realized by both digital and analog circuits.
Because the operation frequency of analog frontend circuits reaches GHz level,
it is infeasible to replace the analog frontend circuits with programmable digital
logic with current circuit technology. Thus, we further narrow down our focus
to the physical layer that is realized with digital circuits. Figure 1 shows a high
level block diagram of the physical layer operation of the W-CDMA terminal.

To aid in explanation, we define the following sets: a set of binary numbers
with dual polarities, B = {−1, 1} 3; a set of complex binary numbers, BC = {a+
jb | a, b ∈ B}; a set of m bit fixed point numbers, I = {a | a,m are integers and,
−2m−1 < a ≤ 2m−1}; and a set of complex numbers represented by two m bit
fixed point numbers, IC = {a + jb | a, b ∈ I}.

Channel Encoder and Decoder The role of a channel encoder and decoder
is for error correction. The channel encoder in a transmitter adds systematic
redundancy into the source information, and the channel decoder in a receiver
corrects errors within the received information by exploiting the systematic regu-
larity of the redundant information. The W-CDMA physical layer uses two kinds
of channel coding schemes: convolutional codes [7] and turbo codes [8]. The
detailed description of the channel codes for the W-CDMA physical layer is
in [9]. The encoders for both codes are simple enough to be implemented with
several flip-flops and exclusive OR gates. However, the decoders for these codes
are highly complex because their operation is to find a maximum likely code
sequence from the received noisy signal.

Among many possible methods, our implementations for the channel de-
coders are based on a soft output Viterbi algorithm (SOVA), because of its lower
computational complexity and the fact that it only shows a slight performance
degradation compared to other methods. The difference between a conventional
Viterbi algorithm and the SOVA is the use of “soft” numbers in the SOVA. If a
soft number is used, each bit plus noise in the received sequence is quantized as a
fixed point number with higher precision (e.g. 4 bits). Although it requires more

3 In conventional binary notation −1 ≡ 1 and 1 ≡ 0

computation power and memory, the use of soft number is necessary in most
practical W-CDMA receivers to provide high fidelity signal processing gain.

00

01

10

11

00

01

10

11

00

01

10

11

CnCn-1 Cn+1

... ...

(a) Trellis diagram

k

Cn+1Cn

i

j

BMCi,k

BMCj,k

ACSi

ACSj

ACSk

(b) ACS operation

Fig. 2. (a) The trellis diagram of a channel encoder comprising 2 flip-flops; (b) The
ACS operation where the source nodes i, j are in the n-th column and the destination
node k is in the (n + 1)-th column

The operation of the SOVA is divided into three steps: branch metric calcu-
lation (BMC), add compare select (ACS), and trace back (TB). All steps of the
Viterbi algorithm are based on a trellis diagram that consists of nodes represent-
ing the state of the channel encoder and arrows representing the state transition
of the channel encoder. Figure 2(a) is an example of a trellis diagram. From
a computation perspective, the BMC operation is equivalent to calculating the
distance between two points, and so it can be expressed as follows:

BMCi,j = distance(rij , oij) = abs(rij − oij) (1)

where i is the source node; j is the destination node; rij ∈ I is the received
signal; and oij ∈ I is the error free output of a channel encoder corresponding
to the state transition from node i to j. The BMC operation on all nodes in a
trellis diagram can be done in parallel because the inputs of the BMC operation
on a node are independent of the result of the BMC operation on other nodes.

Assuming there exist two input transitions at node k from nodes i and j, the
ACS operation on a node k can be represented by following equation:

ACSk = min(ACSi + BMCi,k, ACSj + BMCj,k) (2)

From the above equation, we can see the operation dependency between ACS
operations: ACSk depends on ACSi and ACSj . Therefore, the ACS operations
of all nodes can not be done in parallel. However, nodes i, j and k in the above
equation additionally have the following relation:

if i, j ∈ Cn, then k ∈ Cn+1 (3)

where Cn is a set of nodes in the n-th column of a trellis diagram (see Fig-
ure 2(a)). In other words, the ACS operations of the nodes in the (n + 1)-th

column can be done after the operations on the n-th column. Thus, at least the
ACS operations of a column of a trellis diagram can be done in parallel.

The TB operation yields the most probable bit sequence which was trans-
mitted by the transmitter based on the results for the BMC and ACS operation.
Because the TB operation is similar to transversing a linked list, the operation
is inherently sequential.

This whole set of steps are usually referred to as convolutional coding. If
turbo coding is required, further operations are needed. The turbo decoder is
based on the repeated application of 2 concatenated SOVA decoders. The output
of each SOVA is interleaved, and then feed into the other SOVA. The number of
iterations varies according to channel conditions. Under good conditions, early
termination is possible. Because of the data dependency between the iterations,
parallelization of the iterations of the turbo decoder is not possible.

The parallelism available on the channel decoders is related to the number
of flip-flops used at the channel encoders because it determines the length of
columns in a corresponding trellis diagram. In the W-CDMA physical layer, the
convolutional encoder comprises 8 flip-flops, so the length of the corresponding
column vector is 28 = 256; and the turbo encoder uses 3 flip-flops so the length
of the column vector is 23 = 8. In addition, the number of columns in a trellis
diagram is also determined by the number of flip-flops. It has been shown that
5(n+1) columns in a trellis diagram is sufficient for reliable decoding where n is
the number of flip-flops in a channel encoder [10]. Therefore, the SOVA requires
45 (= 5× (8+1)) columns in the trellis diagram for the convolutional code, and
20 (= 5× (3 + 1)) columns for the turbo code. Because all BMC operations can
be done in parallel, the maximum number of parallel BMC operation is 11520
(= 256× 45) for the convolutional code and 160 (= 8× 20) for the turbo code.
Because the ACS operations of one column can be done in parallel, the maximum
number of parallel ACS operation is 256 for the convolutional code and 8 for
the turbo code. In order to increase the parallelism of the turbo decoder, it is
possible to decode multiple trellis diagrams simultaneously. This is known as the
sliding window technique.

Interleaver and Deinterleaver The interleaver and deinterleaver are used to
overcome severe signal attenuation within a short time interval. In a wireless
channel, an abrupt signal strength drop occurs very frequently. The interleaver
in a transmitter randomizes the sequence of source information, and then the
deinterleaver in a receiver recovers the original sequence by reordering. These
operations scatter errors that occur within a short time interval over a longer
time interval to reduce signal strength variation, and thus bit error rate, under
the same channel conditions. Due to the randomness of the interleaving pattern,
it is difficult to parallelize their operations without complex hardware support.

Modulator and Demodulator Modulation maps source information onto
signal waveforms so that they carry source information over wireless links most
efficiently. Demodulation extracts that information from the received signal. In

the W-CDMA physical layer, two classes of codes are deployed: channelization
codes and scrambling codes.

s
1
[n]

C
ch,1

[n]

s
2
[n]

C
ch,2

[n]

s
sp,1

[n]

s
sp,2

[n]
Complex

Multiplication

C
sc,i

[n]

Radio channel
Complex

Multiplication

C*
sc,i

[n]

Re{r
dsc

[n]}

C
ch,1

[n]

C
ch,2

[n]

s
1
[n]

s
2
[n]

spreading scrambling descrambling despreading

s
sc

[n] r[n]
Im{r

dsc
[n]}

Fig. 3. Spreading/despreading and scrambling/descrambling operations with ignoring
the operation of LPFs and analog frontend circuits

A channelization code is used for multiplexing multiple source streams into
one physical channel. In the transmitter, the procedure to multiply a channeliza-
tion code with a source sequence is called spreading, because it spreads out the
energy of the source information over a wider frequency spectrum. The following
equation shows the spreading operation:

ssp,1[n] = Cch,1[n mod Lch] · s1[bn/Lchc] (4)
ssp,2[n] = Cch,2[n mod Lch] · s2[bn/Lchc] (5)

where s[n] ∈ B is a source data sequence provided by the interleaver; Cch[n] ∈ B
is a channelization code; Lch is the length of the channelization code; mod is
a modulo operation; and b·c is a floor function. Despreading at the receiver
reconstructs the estimated source data sequences s1[n] and s2[n]. This procedure
is shown by the following equations:

s1[n] =
Lch−1∑

i=0

Cch,1[i] ·Re{rdsc[n · Lch + i]} (6)

s2[n] =
Lch−1∑

i=0

Cch,2[i] · Im{rdsc[n · Lch + i]} (7)

where rdsc[n] ∈ IC are the input of despreader which is provided by the de-
scrambler. In the W-CDMA system, Lch is a power of two from 4 to 512. It
varies dynamically according to the source data rate such that the data rate of
the output of spreading is fixed at 3.84 Mbps.

The use of a scrambling code enables us to extract the signal of one terminal
when several terminals are transmitting signals at the same. The operation of
multiplying a scrambling code with the output of the spreader is scrambling
that is described by the following equation:

ssc[n] = Csc[n mod Lsc] · {ssp,1[n] + jssp,2[n]} (8)

where Csc[n] ∈ BC is a scrambling code; Lsc is the length of the scrambling code;
and ssc,1[n], ssc,2[n] ∈ B are the inputs of a scrambler that is generated by the
spreaders. The corresponding action done in the receiver is descrambling which
is described as follows:

rdsc[n] = C∗sc[n mod Lsc] · r[n] (9)

where r[n] ∈ IC is a received signal provided by low pass filters (LPF-Rx);
and the ∗ is a complex conjugate operation. In the W-CDMA physical layer, the
data rate of all complex inputs and outputs of both scrambling and descrambling
operations is fixed at 3.84 mega samples per second.

t

R[t]

signal
threshold

synchronization points searcher

descrambler despreader

descrambler despreader

descrambler despreader

c
 o

 m
 b in

 e
 r

t
1

t
2

t
3

t
1

t
2

t
3a

1

a
2

a
3

a
1
,a

2
,a

3

R[n]

(a) example of cross correlation (b) structure of rake receiver

Fig. 4. (a) Example of cross correlation between the received signal and the scram-
bling code C∗sc[n] in a practical situation. Three synchronization points are detected
by searcher at t1, t2, and t3. (b) Structure of a rake receiver with three rake fingers.
The operation times of each rake finger, t1, t2, and t3, is set by searcher. The combiner
aggregates the partial demodulation results of rake fingers.

One assumption on the operation of the descrambler and despreader is that
the receiver is perfectly synchronized with a transmitter. To achieve time syn-
chronization, a receiver computes the cross correlations between the delayed
version of a received signal r[n − τ] ∈ IC, and a conjugated scrambling code
sequence C∗sc[n] ∈ BC, by varying τ as follows:

R[τ] =
Lcor−1∑

i=0

C∗sc[i] · r[i + τ], where 0 ≤ τ ≤ (Ls − 1) (10)

where Lcor is the correlation length. In an ideal situation, R[τ] is maximized at
the synchronization point because of the auto correlation property of the scram-
bling code: 1

N

∑N−1
i=0 Csc[i] · C∗sc[i − τ] = δ[τ]. However, in a practical situation

there are several correlation peaks because of multipath fading that an identical
radio signal term arrives at a receiver multiple times with random attenuation
and propagation delay. The multipath fading is caused by the reflection of the
radio signal from objects placed on the signal propagation path. The searcher
is an entity that finds synchronization points where the cross correlation R[τ]
is greater than a predefined threshold level. Specifically, the operation of the

searcher can be divided into four steps: 1) R[τ] calculation; 2) detection of lo-
cal correlation peaks by calculating the derivative of R[τ]; 3) filtering out high
frequency noise terms from the local correlation peaks; and 4) global peaks detec-
tion by sorting the filtered local correlation peaks. The steps (1) and (2) have a
high level of parallelism, whereas the steps (3) and (4) are difficult to parallelize.
Details of the searcher can be found in [11]. The Lcor and Ls are important de-
sign parameters that significantly affect the workload of the W-CDMA physical
layer. In our implementation, the Lcor and Ls are assumed to be 320 and 5120
correspondingly.

The receiver of the W-CDMA system descrambles and despreads a received
signal at each of the synchronization points which are detected by the searcher,
and then the partial demodulation results of the synchronization points are ag-
gregated. This generation of partial demodulation results with proper delay com-
pensation and the aggregation of these partial demodulation results mitigates
the effect of the multipath fading. The aggregation of partial demodulation re-
sults is performed by a combiner. A receiver structure comprising the searcher,
multiple demodulation paths, and the combiner is called rake receiver [12].
One demodulation path consisting of a descrambler and despreader is called as
rake finger. The rake receiver is the most popular architecture used for CDMA
terminals. In our implementation, we assumed the maximum number of rake
fingers to be 12.

Low Pass Filter A low pass filter (LPF) filters out signal terms that exist
outside of an allowed frequency band in order to reduce the interference. Filtering
can be represented by an inner product between an input data vector and a
coefficient vector as follows:

y[n] =
LLP F−1∑

i=0

ci · x[n− i] (11)

where x[n] is the input sequence to be filtered; the ci ∈ I are the filter coefficients;
and LLPF is the number of filter coefficients.

There are two kinds of LPFs in the W-CDMA physical layer: LPF-Tx and
LPF-Rx. Although the functionality of both filters are identical, the workload of
both filters are different. The first difference is the size of operand. x[n] ∈ B in
the LPF-Tx, but x[n] ∈ I in the LPF-Rx. The second difference is the number
of LPF entities. At the LPF-Rx, there are two LPFs: one for the real part of the
signal and the other for the imaginary part. However, the LPF-Tx consists of six
LPFs (refer to the LPF-Rx in Figure 5). This structure is the result of an effort
to reduce the amount of multiplication. A detailed explanation on the LPFs of
the W-CDMA system can be found in [13]. In our implementation, LLPF is 65.

Power Control In general, CDMA systems adaptively control transmission
power so that signals can be sent over the wireless channel at a minimum
power level while satisfying a target bit error rate. The random variation of

radio channel characteristics requires a feedback loop to control the strength of
a transmitted signal. A transmitter sends reference signals called pilots, then
a receiver sends back power control commands according to the quality of re-
ceived pilot signals. To evaluate signal quality, it is necessary to fully demodulate
the pilot signal in realtime. This sets a hard realtime requirement in the LPF,
spreader/despreader, scrambler/descrambler and combiner. In the W-CDMA
physical layer, the frequency of the power control operation is about 1.5KHz –
every 0.67 msec.

Operation State From the view point of processor activity, it is possible to
divide the operation of a W-CDMA terminal into three states4: idle, control
hold, and active state. In the idle state a wireless terminal does not provide
any application service to the user. However, even in this state, a terminal must
be ready to respond to control commands from basestations. Although only
simple tasks are performed in the idle state, the power consumed in this state
is significant because a terminal spends most of its time in this state. In the
active state, a terminal transmits and receives user data. It is the most heavily
loaded operation state, because all function blocks are active. The control hold
state is defined to represent the operation of a terminal during short idle periods
between packet bursts. In the control hold state, a terminal maintains a low
bandwidth control connection with basestations for fast transition to the active
state when packets arrive.

3 Workload Analysis

Table 1. Assumed operation conditions of a W-CDMA terminal for workload analysis

Service type Packet service
Representation service Data link 2 Mbps / 128 Kbps

Signaling link 3.4 Kbps bidirectional

of basestations 3
Channel condition # of rake fingers 12

of average turbo iterations 3

Terminal Operation Conditions Before going into the detailed workload
analysis, we need to clarify the operation conditions of the W-CDMA terminal,
4 In the W-CDMA standard, there are five radio resource control (RRC) states; camp-

ing on a UTRAN cell, ura PCH, ura FACH, cell FACH, and cell DCH states [14].
These RRC states are defined from the perspective of radio resource management.
We redefine the operation state of the W-CDMA terminal according to processor
activity. In our definition, the camping on a UTRAN cell, ura PCH, ura FACH, and
cell FACH states are grouped into the idle state. The cell DCH state is divided into
the control hold and active state.

because the workload of the W-CDMA physical layer is affected by several things:
1) operation state; 2) application type; and 3) radio channel status. Because
the operation state significantly affects the hardware for the W-CDMA physical
layer, we will analyze the variation in workload for all operation states. However,
we limit the application type and radio channel condition.

Generally, we can classify application services into two categories: circuit ser-
vice and packet service. Circuit service is a constant data rate service such as
a voice call. Packet service is a variable data rate service such as internet ac-
cess. Because the packet arrival pattern of the packet service demands a more
complex resource management scheme, we select the packet service as our rep-
resentative service. In addition, we further assume an asymmetric packet service
that consists of a 2 Mbps link in the direction from basestation to terminal and
a 128 Kbps link in the reverse direction. The asymmetric channel assumption
matches the behavior of most packet services, for instance web browsing. For
control signaling, the packet service additionally has a bidirectional signaling
link with a 3.4 Kbps data rate.

The workload of a W-CDMA terminal is also varied by three radio channel
conditions: 1) the number of basestations that communicate with a terminal at
the same time; 2) the number of correlation peaks resulted in by the multipath
fading; and 3) the quality of received signal. We assume 3 basestations, and 4
correlation peaks from the signal of a basestation. Thus, the W-CDMA terminal
activates a total of 12 (= 3× 4) rake fingers. Because he quality of the received
signal has a direct impact on the number of iterations of the turbo decoder, we
assumed the quality of the received signal is set by the power control such that
the average number of turbo decoder iterations is 3 per frame.

System Block Diagram Figure 5 shows a detailed block diagram of the W-
CDMA physical layer. It explains which algorithms participate in the action
of each operation state. In the idle state, a subset of the reception path, the
LPF-Rx and rake receiver, is active. In the control hold state, a bidirectional
3.4 Kbps signaling link is established with the basestations. Thus, a terminal
activates both transmission and reception paths including the convolutional en-
coder/Viterbi decoder, LPF-Rx/Tx, modulator/demoulator, and power control.
In the active state, a terminal additionally establishes a bidirectional high speed
data link as shown in Table 1. Thus, the turbo encoder/decoder participate in
the active state operation of a terminal.

Figure 5 also describes the interface between the algorithms of that make
up W-CDMA. The number at the top of each arrow represents the number of
samples per second, and that at the bottom represents the size of a sample. From
these numbers, we can derive the amount of traffic between the algorithms. The
size of most data in the transmission path is 1 bit, but it is 8 or 16 bit in the
reception path because the channel decoders use soft numbers as explained pre-
viously. From the diagram, we can see that the data rate is abruptly changed
by the spreader and despreader. In the transmission path, the data rate is up-

Searcher

descrambler despreader
3.84M
(8bit)

combiner

LPF-Rx
3.84Mx2

(8bit)
3.84Mx2

(8bit)

A/D

Scrambling
Code Gen.

(1bit)
3.84M/8

15K
(8bit)

15K

(8bit)

(1bit)
3.84M

Deinterleaver
15K

(8bit)

Viterbi

Decoder

3.4K

(1bit)

Viterbi

Encoder
Interleaver

15K

(1bit)

3.4K

(1bit)
spreader

15K

(1bit)

scrambler

Scrambling
Code Gen.

(1bit)

3.84M

3.84M

(1bit)

spreader
3.84M
(1bit)

LPF-Tx

LPF-Tx

LPF-Tx

LPF-Tx
3.84M

(1bit)

3.84M
(1bit)

3.84M
(1bit)

3.84M

(1bit)

LPF-Rx
3.84Mx2

(8bit)

3.84Mx2

(8bit)

Power
Control

15K

(1bit)

15K

(1bit)

1.5K
(16bit)

Gain control

D/A

3.84Mx4
(16bit)

3.84Mx4

(16bit)

1.5K

(8bit)

1.5K
(8bit)

1.5K

(128bit)

descrambler despreader
3.84M

(8bit)
15K

(8bit)

....

descrambler despreader
3.84M
(8bit)

combiner

960K
(8bit)

960K

(8bit)

Deinterleaver
2.88M

(8bit)

Turbo

Decoder

2M

(1bit)

descrambler despreader
3.84M
(8bit)

960K

(8bit)

....

Idle state

Control hold state

Active state

Turbo
Encoder

Interleaver
240K
(1bit)

128K
(1bit)

spreader
240K
(1bit)

3.84M
(1bit)

960K
(8bit)

960K

(8bit)

scrambler

scrambler

LPF-Tx

LPF-Tx
3.84M
(1bit)

3.84M

(1bit)

3.84Mx4
(16bit)

3.84Mx4

(16bit)

3.84Mx4

(16bit)

3.84Mx4
(16bit)

3.84Mx4
(16bit)

3.84Mx4

(16bit)

Fig. 5. Detailed block diagram of the W-CDMA physical layer providing the packet
service described in Table 1.

converted from kilo sample per second to mega samples per seconds after the
spreading operation. The reception path exhibits the reverse.

Table 2. Processing time requirements of the W-CDMA physical layer

Active/Control hold state Idle state
Processing Execution Processing
Time(ms) Freq.(Hz) Time(ms)

Searcher Fixed(5∗) 50∗ Fixed(40∗)
Interleaver/Deinterleaver Fixed(10) 100 -

Convolutional encoder
Viterbi decoder Fixed(10/20/40)
Turbo encoder Variable -
Turbo decoder Variable(10∼50∗)
Scrambler/Descrambler
Spreader/Despreader Fixed(0.67)
LPF-Rx Fixed(0.67) 1500
LPF-Tx -
Power control

Processing Time Table 2 shows that the W-CDMA physical layer is a mixture
of algorithms with various processing time requirements. The ∗ notation in the
table indicates that the corresponding parameter is a design parameter. Other
parameters in the table are explicitly specified by the W-CDMA standard. The
processing time shown in the second and fourth columns is the allocated time
for one call to each algorithm. The task frequency in the third column is the
number of times each algorithm is called within a second.

We assume that the searcher is executed every 20 msec because a radio
channel can be considered as unchanging during this interval. The scrambler,
spreader, and LPF have periodic and very strict processing time requirements,
because they participate in the power control action. The convolutional code
is mainly used for the circuit service with a constant data rate, so the Viterbi
decoder needs to fulfill its operation before the arrival of the next frame to avoid
buffer overflow. The processing time of the Viterbi decoder can be configured
with 10, 20, or 40 msec intervals according to how the service frame length
is configured. Whereas the turbo code aims the packet service with a burst
packet arrival pattern. By buffering of bursty packets, can relax its processing
time constraint significantly. We assume that the processing time of the turbo
decoder varies between 10∼50 msec according to the amount of buffered traffic.
In the idle state, tasks have loose timing constraints, so the searcher operation
is sequentially performed with minimal hardware and the task frequency is not
a concern.

Table 3. Peak workload profile of the W-CDMA physical layer and its variation ac-
cording to the operation state

Active Control Hold Idle
(MOPS) % (MOPS) % (MOPS) %

Searcher 26538.0 42.1 26358.0 58.4 3317.3 37.7

Interleaver 2.2 0.0 2.2 0.0 - -

Deinterleaver 0.2 0.0 0.2 0.0 - -

Conv. encoder 0.0 0.0 0.0 0.0 - -

Viterbi Decoder 200.0 0.3 200.0 0.4 - -

Turbo encoder 0.0 0.0 0.0 0.0 - -

Turbo decoder 17500.0 27.8 0.0 0.0 - -

Scrambler 245.3 0.4 245.3 0.5 - -

Descrambler 2621.4 4.2 2621.4 5.8 889.2 10.1

Spreader 297.5 0.5 297.5 0.7 - 0.0

Despreader 3642.5 5.8 3642.5 8.0 607.1 6.9

LPF-Rx 3993.6 6.3 3993.6 8.8 3993.6 45.3

LPF-Tx 7897.2 12.6 7897.2 17.4 - -

Power control 0.0 0.0 0.0 0.0 - -

Total 62937.0 - 45272.9 - 8807.2 -

Workload Profile The detailed workload profile of the W-CDMA physical
layer is shown in Table 3. For this analysis, we compiled our W-CDMA bench-
mark with an Alpha gcc compiler, and executed it on the M5 architectural
simulator [15]. We measured the instruction count that is required to finish each
algorithm. Peak workload of each algorithm is achieved by dividing the instruc-
tion count by the tightest processing time requirement of each algorithm shown
in Table 2.

The first thing to note in Table 3 is that the total workload varies according
to the operation state change. The total workloads in the control hold and idle
states are about 72% and 14% of that in the active state. Second, the workload
profile also varies according to the operation state. In the active and control hold
states, the searcher, turbo decoder, LPF-Tx are dominant. In the idle state, the
searcher and LPF-Rx are dominant.

Intrinsic Computations Major intrinsic operations in the W-CDMA physical
layer operation is listed in Table 4. As we discussed in Section 2, many algorithms
in the W-CDMA physical layer are based on multiplication operations. Because
multiplication is a power consuming operation, it is advantageous to simplify
this into operations. First, the multiplications in the spreader and scrambler can
be simplified to an exclusive OR, because both operands are either 1 or -1. By
mapping {1, -1} to {0, 1}, we can use the exclusive OR operation instead of mul-
tiplication. Second, the multiplications in the searcher, descrambler, despreader,
and LPF-Tx can be simplified into conditional complement operations, because
one operand of the multiplications in these algorithms is either -1 or 1, and

Table 4. Intrinsic computations in the W-CDMA physical layer

Operations Algorithms Description

Exclusive OR Spreader, Scrambler z = x⊕ y

Conditional Searcher, Descrambler z = s ? x : −x
Complement Despreader, LPF-Tx

Multiplication LPF-Rx z = c · x
Scalar reduction Searcher, Despreader, LPF z =

∑N−1

i=0
xi

Vector permutation Viterbi/Turbo decoder, Searcher z[n] = x[n + pn]

BMC Viterbi/Turbo decoder z = abs(x0 − x1)

ACS Viterbi/Turbo decoder z = min(x0 + c0, x1 + c1)

the other operand is a fixed point number. However, the multiplication of the
LPF-Rx cannot be simplified because both operands are fixed point numbers.
The operands of the multiplications in Equations (8), (9), and (10) are complex
numbers. We can treat these operations as integer multiplications, because of
the following relation: (a + jb)(c + jd) = (ac− bd) + j(bd + ad).

For the frequent inner product operations of the searcher, despreader, and
LPFs, we need a scalar reduction operation to add up all elements in a vector.
A vector permutation is also required for the channel decoders and searcher, be-
cause either output or operand vector needs to be permuted. In channel decoders,
the core operations are the BMC and ACS.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Sea
rc

he
r

In
te

rle
av

e

D
ei
nt

er
le
av

er

Vite
rb

i E
nc

od
er

Vite
rb

i d
ec

od
er

Tur
bo

 e
nc

od
er

Tur
bo

 d
ec

od
er

Scr
am

bl
er

D
es

cr
am

bl
er

Spr
ea

de
r

D
es

pr
ea

de
r

C
om

bi
ne

r

LP
F (R

x)

LP
F (T

x)

Pow
er

 c
on

tro
l

Ave
ra

ge

Misc

BRANCH

ST

LD

LOGIC

MUL/DIV

ADD/SUB

Fig. 6. Instruction type breakdown result

Instruction Type Breakdown Figure 6 shows the instruction type break-
down for the W-CDMA physical layer and their weighted average. To obtain
these results, a terminal is in the active state with peak workload. Instruc-
tions are grouped into seven categories: add/sub; multiply/divide; logic; load;
store; branches; and miscellaneous instructions. Because all algorithms are im-
plemented with fixed point operations, there are no floating point instruction
types shown here.

The first thing to notice is the high percentage of add/subtract instructions.
They account for almost 50% of all instructions, with the searcher at about
70%. This is because the searcher’s core operation is the inner product of two
vectors, and the multiplication in an inner product can be simplified into a
conditional complement. Furthermore, the complement operation is equivalent
to a subtraction. Other hotspots, like the turbo decoder, also have a large number
of addition operations. In the BMC and ACS of the turbo decoder, the additions
are for calculating the distance between two points. In the TB of the turbo
decoder, the additions come from pointer chasing address calculation.

The second thing to notice is the lack of multiplications/divisions (∼3% on
average). This is because the multiplications of major algorithms are simplified
into logical or arithmetic operations as discussed earlier. The multiplication of
the combiner and turbo encoder is not a significant because their workload is
very small as shown in Table 3. One exception is multiplications in the LPF-Rx.
Figure 6 also shows that the number of load/store operations are significant.
This is because most algorithms consist of loading two operands and storing the
operation result.

Results also show that the portion of branch operations is about 10% on av-
erage. Most frequent branch patterns are loops with a fixed number of iterations
corresponding to a vector size, and a conditional operation on vector variables.
There are a few while or do-while loops, and most loops are 1 or 2 levels deep.

Parallelism To meet the W-CDMA performance requirements in software, we
must exploit the inherent algorithmic parallelism. Table 5 shows a breakdown
of the available parallelism in the W-CDMA physical layer. We define data level
parallelism (DLP) as the maximum single instruction multiple data (SIMD)
vector width and thread level parallelism (TLP) as the maximum number of
different SIMD threads that can be executed in parallel. The second and third
columns in the table are the ratio between the run time of the scalar code and
the vector code. The fourth column represents maximum possible DLP. Because
a vector operation needs two operands, we separately represent the bit width
of two vector operands in the fifth column. The last column shows the TLP
information.

From Table 5, we can see that the searcher, LPF, scrambler, descrambler,
and the BMC of the Viterbi decoder contain large amounts of the DLP and
TLP. For the case of the scrambler and descrambler, it is possible to convert the
DLP into TLP by subdividing large vectors into smaller ones. Although it is one
of dominant workloads, the turbo decoder contains limited vector parallelism

Table 5. Parallelism available in the algorithms of the W-CDMA physical layer

Vector Vector Max
Scalar Vector width element concurrent

workload workload (elements) width Thread
(%) (%) (bit)

Searcher 3 97 320 1,8 5120

Interleaver 100 0 - - -

Deinterleaver 100 0 - - -

Viterbi encoder 60 40 8 1,1 1

Viterbi BMC 1 99 256 8,8 45
Decoder ACS 1 99 256 8,8 45

TB 100 0 - - -

Turbo encoder 60 40 4 1,1 2

Turbo BMC 1 99 16 8,8 20
Decoder ACS 1 99 16 8,8 20

TB 100 0 - - -

Scrambler 1 99 2560 1,1 1

Descrambler 1 99 2560 1,8 1

Spreader 100 0 - - -

Despreader 100 0 - - -

Combiner 100 0 - - -

LPF-Tx 1 99 65 1,16 6

LPF-Tx 1 99 65 8,8 2

Power Control 100 0 - - -

because the allowed maximum vector length of the ACS operation of the turbo
decoder is 8.

There are also many unparallelizable algorithms in the W-CDMA physical
layer. The interleaver, deinterleaver, spreader, despreader, and combiner opera-
tions have little DLP and TLP. Fortunately, the workload of these algorithms
is not significant as show in Table 3. Therefore we can easily increase system
throughput by exploiting the inherent parallelism shown in Table 5.

Memory Requirement Because memory is one of the dominant power con-
suming elements in most systems, the analysis of the characteristics of memory
is important. In general, there are two types of memory in a hardware system:
data memory and instruction memory. Table 6 presents the data and instruction
memory for all the algorithms in W-CDMA.

Columns 2∼7 in Table 6 show the size of the required data memory. The data
memory is further divided into two categories: I/O buffer and scratch pad. The
I/O buffer memory is used for buffering streams between algorithms. The scratch
pad memory is temporary space needed for algorithm execution. We analyzed
both size and access bandwidth of the data memory.

Table 6. Memory requirements of the algorithms of the W-CDMA physical layer

Data memory (Kbyte) Inst.
I-buffer O-buffer Scratch pad Memory

Kbyte Mbps Kbyte Mbps Kbyte Mbps (Kbyte)

Searcher 20.8 2.1 0.1 0.1 32.0 2654.3 3.1

Interleaver 1.2 1.1 1.2 1.1 9.5 1.9 0.1

Deinterleaver 26.1 5.2 26.1 5.2 8.7 5.2 0.1

Viterbi Encoder 0.1 0.1 0.1 0.1 0.1 0.1 0.3

Viterbi Decoder 0.1 0.1 0.1 0.1 4.8 2.1 1.6

Turbo Encoder 2.6 4.0 7.8 12.0 0.1 2.0 1.6

Turbo Decoder 61.5 96.0 2.6 4.0 6.4 25600.0 3.4

Scrambler 0.7 15.4 0.7 15.4 0.7 15.4 0.5

Descrambler 5.6 123.2 5.6 123.2 0.7 15.4 0.5

Spreader 0.1 1.9 0.4 7.6 0.1 3.9 0.4

Despreader 0.4 7.6 0.1 1.9 0.1 3.9 0.3

Combiner 0.1 0.1 0.1 0.1 0.1 0.1 0.1

LPF-Tx 0.3 7.6 10.3 245.8 0.1 1996.8 0.2

LPF-Rx 10.5 245.8 2.5 61.4 0.1 1996.8 0.2

Power control 0.1 0.1 0.1 0.1 0.1 0.1 0.1

From the table, we can see that the W-CDMA algorithms require a small
amount data memory, generally less than 64 Kbyte. In addition, we can see
that the scratch pad memory is the most frequently accessed, especially in the
searcher, turbo decoder, and LPFs. The access of I/O memory does not occupy
a significant portion at the total memory access.

The last column of Table 6 shows the instruction memory size for each algo-
rithm. For the analysis of the instruction memory size, we compiled our bench-
mark program on an Alpha processor. The average code size is less than 1 Kbyte
and most kernels are below 0.5 Kbyte. This result is typical of many digital signal
processing algorithms.

4 Architectural Implications

System Budget The power budget allocated to baseband signal processing
in commercial wireless terminals is typically between 100∼300 mW. Using this
power budget and the total peak workload data from Table 3, we calculated
that the power efficiency of a processor for the W-CDMA physical layer must be
between 210∼630 MOPS/mW. Because W-CDMA is one of the leading emerg-
ing wireless communication networks, we take this result as the system budget
for typical SDR applications. In addition, we have calculated the maximum
performance and energy efficiency of three conventional architectures: a digital
signal processor (DSP), an embedded processor, and a general purpose processor
(GPP). As shown in Table 7, these conventional architectures are a long way off
of satisfying the requirements of SDR.

Table 7. Estimation of system budgets for SDR applications and the achievable level
of some typical commercial processors

Power Efficiency
(MOPS/mW)

Budget for SDR applications 210∼630

DSP: TI TMS320C55X [16][17] ∼40

Embedded Processor: AD ADSP-TS201 Tigersharc [18][19] ∼5

GPP: AMD Athelon MP [20][21] ∼0.003

SIMD Processor One key aspect for supporting the W-CDMA physical layer
is to use an SIMD architecture. There are two main reasons why an SIMD
architecture is beneficial. First, is that the W-CDMA physical layer contains a
large amount of DLP as shown in Table 5. Second, the types of computations in
tasks with high levels of DLP are mainly add/subtract operations. The absence
of complex operations allows us to duplicate the SIMD functional units with
minimal area and power overhead. Furthermore, we can expect significant power
gain because a SIMD architecture can execute multiple data elements with one
instruction decoding.

The intrinsic instructions shown in Table 4 can be used as a guide to designing
the datapath and instruction set of the SIMD processor. In addition to the
narrow data widths and simple operations, the datapath of the SIMD processor
needs a vector status register that stores the status for each element of vector
operations such as carry, zero and overflow. These vector status registers are
useful for the realization of the conditional complement shown in Table 4. The
datapath of the SIMD processor also needs a shuffle network to support vector
permutation operations. The output of the arithmetic unit is shuffled before
being stored in the register file. The hardware complexity of the shuffle network
is exponentially proportional to the number of input nodes, which sets a limit
on the width of the SIMD processor.

Scalar Processor In addition to SIMD support, the W-CDMA physical layer
requires scalar support because there are many small scalar algorithms in the
W-CDMA physical layer as shown in Table 5. These scalar algorithms can be
broken down into two main types: control and management tasks like the power
control and rake receiver; and computation intensive DSP operations like the
TB of the turbo decoder. Most of the control operations have tight response
time requirements, so there is a need for realtime interrupt support in the scalar
processor. A conventional low power GPP such as an ARM processor is adequate
for the scalar processor.

Multiprocessor To further enhance the performance, a multiprocessor archi-
tecture is desirable if the TLP in the W-CDMA physical layer is to be exploited.
Implementing a multiprocessor architecture raises many design questions: the

granularity of the processing element (PE); the application task partitioning
and mapping; the inter-process communication (IPC) mechanisms; and the het-
erogeneity of the PE.

One key factor which determines the efficiency of a multiprocessor architec-
ture is the amount of IPC. Communication over an IPC network takes longer and
dissipates more power than an internal memory structure. Because of this, the
size of the PEs and the method of mapping and partitioning application tasks
should be determined so as to minimize IPC. In addition, the choice of the IPC
mechanism is important, because the communication pattern of the W-CDMA
physical layer is point to point. This favors message passing, because copying of
data from one PE to another is more power efficient.

Another method for enhancing performance is using heterogeneous PEs. It
is possible to save chip area by implementing the multiplier only on a subset
of PEs because multiplication is not used for all W-CDMA algorithms. Though
heterogeneous PEs are desirable, homogeneous PE reduces development cost by
reusing PE design.

Memory Hierarchy In the memory hierarchy, certain choices optimizing for
power is important. In the local memory of the PEs, the size of the memory
is crucial for power efficiency, because, as shown in Table 6, there is very high
internal memory traffic in the algorithms. Minimizing the size of these memories
is necessary for more power efficient accesses. Also a global memory should be
used because the W-CDMA physical layer requires the buffering of large bursty
data traffic–input data traffic to the turbo decoder. This removes the need for
large and power inefficient local memories.

For the W-CDMA physical layer, data and instruction caches are not es-
sential. The memory access pattern of the W-CDMA physical layer is highly
deterministic and exhibits very dense spacial locality, so it is possible to sched-
ule memory access patterns in small sized memories. The advantages of cache
free memories are low power consumption and a deterministic operation time. In
DSP applications, a deterministic operation time is necessary for meeting timing
requirements and easy system validation.

Power Management Two power management challenges arise from the work-
load profile presented in Table 3: (1) Optimize the system for wide workload vari-
ations in the active and control hold states; (2) Minimize the power consumption
in the idle state. Dynamic voltage scaling (DVS) and dynamic frequency scaling
(DFS) are attractive ways to tackle the first challenge. The operation voltage
and frequency can be dynamically adjusted according to the variation of wireless
channel conditions and user traffic. In order to minimize the power consumption
in the idle state, we can selectively turn-off blocks which are not required in this
state, such as the LPF-Tx and turbo decoder. In addition, the operation of the
LPF-Rx and search must be optimized for power, because these tasks are the
leading power consumers in the idle state.

5 Conclusion

Software defined radio presents a new challenge for the architecture community.
A programmable SDR solution needs to offer supercomputer performance, while
running on mobile devices with ultra low power consumption. In this paper, we
have presented a complete W-CDMA system benchmark and an analysis of its
computational characteristics. The benchmark includes realistic operating con-
ditions, and algorithm configurations that are based on commercial W-CDMA
implementations. From our study, W-CDMA shows very unique dynamic behav-
ior characteristics. It has ultra high performance requirements, and dynamically
changing real-time processing requirements. The algorithms are dominated by
addition/subtraction, small memory footprints, and a high degree of data and
task level parallelism. The results indicate that a programmable architecture
needs SIMD as well as scalar support, can be optimized for narrow width op-
erations, requires only small instruction and data memories, and can exploit
dynamic voltage scaling to account for dynamic workload changes. Our bench-
marks provide a useful evaluation for future architecture studies of SDR. In the
future, we will include 802.11x protocols into our benchmark suite to gain further
understanding of the programmability and computation requirements of wireless
protocols.

References

1. Austin, T., et al.: Mobile Supercomputers. IEEE Computer 37 (2004) 82-84
2. Tuttlebee, W.: Software Defined Radio: Baseband Technology for 3G Handset and

Basestations. 1st edn. John Wiley & Sons, New York (2002)
3. Holma, H., Toskala, A.: W-CDMA for UMTS: Radio Access for Third Generation

Mobile Communications. John Wiley & Sons, New York (2000)
4. http://www.sandbridgetech.com/
5. http://gram.eng.uci.edu/morphosys/
6. http://www.3p1t.com/
7. Forney, G., D., Jr.: The Viterbi Algorithm. Proc. IEEE 61 (1973) 268-278
8. Berrou, C., Glavieux, A., Thitimjshima, P.: Near Shannon Limit Error Correcting

Coding and Decoding: Turbo-Codes. ICC (1993)
9. 3GPP TS 25.211, Multiplexing and Channel Coding (FDD)
10. Parhi, K., Nishitani, T.: Digital Signal Processing for Multimedia Systems. 1st edn.

Marcel Dekker, New York (1999)
11. Grayver, E., et al.: Design and VLSI Implementation for a WCDMA Multipath

Searcher. IEEE Trans. on Vehicular Technology 54 (2005) 889-902
12. Rappaport, T.: Wireless Communications: Principles and Practice. IEEE Press,

Piscataway (1996)
13. Berenguer, I., et al.: Efficient VLSI Design of a Pulse Shaping Filter and DAC

interface for W-CDMA transmission. 16th IEEE International ASIC/SoC Conference
(2003)

14. 3GPP TS 25.331: Radio Resource Control (RRC) Protocol Specification
15. Binkert, N., Hallnor, E., and Reinhardt, S.: Network-Oriented Full-System Simu-

lation using M5. CAECW (2003)

16. http://www.bdti.com/procsum/tic55xx.htm
17. Dielissen, J., et al.: Power-Efficient Layered Turbo Decoder processor. DATE

(2001)
18. http://www.analog.com/
19. Bursky, D.: DSPs Attack Throughput Needs with 600-MHz Clocks and eDRAM.

Electronic Design 51 (2003)
20. http://www.amd.com/
21. Feng. W.: Honey, I Shrunk the Beowulf!. ICPP (2002)

