
The Minimum Manhattan Network Problem:

A Fast Factor-3 Approximation∗

Marc Benkert† Alexander Wolff† Florian Widmann‡

Technical Report 2004-16

Fakultät für Informatik, Universität Karlsruhe

Abstract

Given a set of nodes in the plane and a constant t ≥ 1, a Euclidean
t-spanner is a network in which, for any pair of nodes, the ratio of the
network distance and the Euclidean distance of the two nodes is at most t.
Such networks have applications in transportation or communication net-
work design and have been studied extensively.

In this paper we study 1-spanners under the Manhattan (or L1-) met-
ric. Such networks are called Manhattan networks. A Manhattan net-
work for a set of nodes can be seen as a set of axis-parallel line segments
whose union contains a Manhattan path for each pair of nodes. It is not
known whether it is NP-hard to compute minimum Manhattan networks
(MMN), i.e. Manhattan networks of minimum total length. In this paper
we present a factor-3 approximation algorithm for this problem. Given a
set P of n nodes, our algorithm computes in O(n log n) time and linear
space a Manhattan network for P whose length is at most 3 times the
length of an MMN of P . We have implemented our algorithm and have
done a thorough experimental analysis.

1 Introduction

For many applications it is desirable to connect the nodes of a transportation
or communication network by short paths within the network. In the Euclidean
plane this can be achieved by connecting all pairs of nodes by straight line
segments. While the complete graph minimizes node-to-node travel time, it
maximizes the network-construction costs. An interesting alternative are Eu-
clidean t-spanners, i.e. networks in which the ratio of the network distance and
the Euclidean distance between any pair of nodes is bounded by a constant t ≥ 1.
Euclidean spanners were introduced by Chew [Che89] and have since been stud-
ied extensively—see for instance the survey by Eppstein [Epp00]. Researchers
have tried to construct spanners with other desirable properties, such as small
node degree, small total edge length, and small diameter. Spanners with one

∗This work was supported by grant WO 758/4-1 of the German Science Foundation (DFG).
†Faculty of Computer Science, Karlsruhe University, P.O. Box 6980, D-76128 Karlsruhe,

Germany. WWW: http://i11www.ira.uka.de/algo/group
‡Email: ui72@stud.uni-karlsruhe.de

1

or more of these properties can be constructed in O(n log n) time [ADM+95],
where n is the number of nodes.

Under the Euclidean metric, in a 1-spanner (which is the complete graph)
the location of each edge is uniquely determined. This is not the case in the
Manhattan (or L1-) metric, where an edge {p, q} of a 1-spanner is a Manhattan
p–q path, i.e. a staircase path between p and q. A 1-spanner under the Manhat-
tan metric for a finite point set P ⊂ R2 is called a Manhattan network and can
be seen as a set of axis-parallel line segments whose union contains a Manhattan
p–q path for each pair {p, q} ∈

(
P
2

)
.

In this paper we investigate how the extra degree of freedom in routing
edges can be used to construct Manhattan networks of minimum total length,
so-called minimum Manhattan networks (MMN). The MMN problem may have
applications in city planning or VLSI layout, but Lam et al. [LAP03] also de-
scribe an application in computational biology. For aligning gene sequences
they propose a three-step approach. In the first step, they use a local-alignment
algorithm like BLAST [AGM+90] to identify subsequences of high similarity, so-
called high-scoring pairs (HSP). In the second step they compute a network for
certain points given by the HSPs. They do not require that each point be con-
nected by Manhattan paths to all other points, but only to those that have both
larger x- and y-coordinates. A Manhattan path in their setting corresponds to
a sequence of insertions, deletions, and (mis)matches that are needed to trans-
form one point representing a gene sequence into another. Lam et al. show that
modifying an algorithm by Gudmundsson et al. [GLN01] yields a O(n3)-time
factor-2 approximation for their problem. They state that the restriction to the
network they compute helps to considerably reduce the size of the search space
for a good alignment, which is computed by dynamic programming in the third
step of their approach.

1.1 Previous work

The MMN problem has been considered before, but until now, its complexity
status is unknown. Gudmundsson et al. [GLN01] have proposed an O(n log n)-
time factor-8 and an O(n3)-time factor-4 approximation algorithm. Later Kato
et al. [KIA02] have given an O(n3)-time factor-2 approximation algorithm. How-
ever, the correctness proof of Kato et al. is incomplete. Both the factor-4 ap-
proximation and the algorithm by Kato et al. use quadratic space. We now
briefly sketch all three algorithms.

Gudmundsson et al. [GLN01] considered each input point p separately. From
p they established Manhattan paths to those points p′ where the bounding box
of p and p′ contained no other input point. This yields a Manhattan network.
In order to establish the paths from p to all points p′, they considered the
points p′ in each of the four quadrants relative to p simultaneously. In each
of the quadrants, these points define a staircase polygon. The points p′ are
connected to p by rectangulating the staircase polygon, minimizing the length
of the segments used for the rectangulation. Solving this subproblem by a fac-
tor-2 approximation algorithm yields the factor-8 approximation algorithm for
the MMN problem while using dynamic programming to solve the subproblem
optimally yields the factor-4 approximation.

Kato et al. [KIA02] observed that it is not always necessary to connect p
explicitly to all points p′. Instead, they came up with the notion of a generating

2

set, i.e. a set of pairs of points with the property that each network that contains
Manhattan paths between these point pairs is already a Manhattan network.
In a first step they constructed a network N ′ whose length is bounded from
above by the length of an MMN. Kato et al. designed the network N ′ such that
it contains Manhattan paths for as many point pairs in the generating set as
possible. They claimed that in a second step, they could rectangulate the facets
of N ′ such that the remaining unconnected point pairs are connected and the
total length of the new segments is again bounded from above by the length
of an MMN. Both the details of this step and the proof of its correctness are
missing in [KIA02].

1.2 Our results

In this paper we present an O(n log n)-time factor-3 approximation algorithm.
We use the generating set of [KIA02], and we also split the generating set into
two subsets for which we incrementally establish Manhattan paths. However,
our algorithm is simpler, faster and uses only linear (instead of quadratic) stor-
age. The main novelty of our approach is that we partition the plane into two
regions and compare the network computed by our algorithm to an MMN in
each region separately. One region of the partition is given by the union of
staircase polygons that have to be pseudo-rectangulated. For this subproblem a
factor-2 approximation suffices. It runs in O(n log n) time and is similar to the
factor-2 approximation for rectangulating staircase polygons that Gudmundsson
et al. [GLN01] proposed.

We implemented our factor-3 approximation algorithm and measured its
performance on random point sets using an exact solver based on a mixed integer
formulation for the MMN problem [WBS04]. Further, we make an extensive
comparison with other algorithms including the factor-4 and -8 approximations
of Gudmundsson et al. [GLN01]. It turns out that our algorithm usually finds
Manhattan networks that are at most 50% longer than the corresponding MMN.
However, for any ε > 0 there is a point set for which our algorithm returns a
Manhattan network that is (3− ε) times as long as the corresponding MMN.

This paper is structured as follows. In Section 2 and 3 we give some basic
definitions and show how helpful information for our network is computed. In
Section 4 we detail how the backbone of our network is computed. We describe
the algorithm precisely in Section 5 and analyze its approximation factor in
Section 6. The practical performance of the algorithm is evaluated in Section 7.
We conclude with some open problems in Section 8.

We have made our algorithm available via a Java applet under the URL
http://i11www.ira.uka.de/manhattan. The applet also features the factor-4 and
factor-8 approximation algorithms by Gudmundsson et al. [GLN01].

2 Basic definitions

We use |M | to denote the total length of a set M of line segments. For all such
sets M we assume throughout the paper that each segment of M is inclusion-
maximal with respect to

⋃
M . It is not hard to see that for every Manhattan

network M there is a Manhattan network M ′ with |M ′| ≤ |M | that is contained
in the grid induced by the input points, i.e. M ′ is a subset of the union U of the

3

http://i11www.ira.uka.de/manhattan

horizontal and vertical lines through the input points. Therefore we will only
consider networks contained in U . It is clear that any meaningful Manhattan
network of a point set P is contained in the bounding box BBox(P) of P . Find-
ing a Manhattan network for given P is rather easy, e.g. the parts of U within
BBox(P) yield a Manhattan network. However, the point set {(1, 1), . . . , (n, n)}
shows that this network is not always a good approximation, in this case it is n
times longer than an MMN.

We will use the notion of a generating set that has been introduced in
[KIA02]. A generating set is a subset of

(
P
2

)
with the property that a network

containing Manhattan paths for all pairs in the subset is already a Manhattan
network of P .

The authors of [KIA02] defined a generating set Z with the nice property that
Z consists only of a linear number of point pairs. We use the same generating
set Z, but more intuitive names for the subsets of Z. We define Z to be the
union of three subsets Zhor, Zver and Zquad. These subsets are defined below.
Our algorithm will establish Manhattan paths for all point pairs of Z—first for
those in Zhor ∪ Zver and then for those in Zquad.

Definition 1 (Zver) Let P = {p1, . . . , pn} be the set of input points in lex-
icographical order, where pi = (xi, yi). Let x1 < · · · < xu be the sequence
of x-coordinates of the points in P in ascending order. For i = 1, . . . , u let
P i = {pa(i), pa(i)+1, . . . , pb(i)} be the set of all p ∈ P with x-coordinate xi. Then

Zver = {(pi, pi+1) | xi = xi+1 and 1 ≤ i < n}
∪ {(pa(i), pb(i+1)) | ya(i) > yb(i+1) and 1 ≤ i < u}
∪ {(pb(i), pa(i+1)) | yb(i) < ya(i+1) and 1 ≤ i < u}.

See Figure 3, where all pairs of Zver are connected by an edge. Note that Zver

consists of at most n− 1 point pairs. If no points have the same x-coordinate,
it holds that Zver = {(pi, pi+1) | 1 ≤ i < n}, i.e. Zver is the set of neighboring
pairs in the lexicographical order. The definition of Zhor is analogous to that of
Zver with the roles of x and y exchanged. Figure 4 shows that Zhor ∪Zver is not
necessarily a generating set: Since (p, h) ∈ Zhor and (p, v) ∈ Zver, no network
that consists only of Manhattan paths between pairs in Zhor ∪ Zver contains a
Manhattan p–q path. This shows the necessity of a third subset Zquad of Z.

Definition 2 (Zquad) For a point r ∈ R2 denote its Cartesian coordinates by
(xr, yr). Let Q(r, 1) = {s ∈ R2 | xr ≤ xs and yr ≤ ys} be the first quadrant of
the Cartesian coordinate system with origin r. Define Q(r, 2), Q(r, 3), Q(r, 4)
analogously and in the usual order. Then Zquad is the set of all ordered pairs
(p, q) with p, q ∈ P and q ∈ Q(p, t) for some t ∈ {1, 2, 3, 4} that fulfill

(a) q is the point that has minimum y-distance from p among all points in
Q(p, t) ∩ P with minimum x-distance from p, and

(b) there is no q′ ∈ Q(p, t) ∩ P with {p, q′} ∈ Zhor ∪ Zver.

Obviously Zquad consists of at most 4n point pairs. For the proof that Zquad

is in fact sufficient for Z = Zver∪Zhor∪Zquad to be a generating set, see [KIA02].
For our analysis we need the following areas of the plane. Let Rhor =

{BBox(p, q) | {p, q} ∈ Zhor}, where BBox(p, q) is the smallest axis-parallel closed
rectangle that contains p and q. Note that BBox(p, q) is just the line segment

4

Seg[p, q] from p to q, if p and q lie on the same horizontal or vertical line.
In this case we call BBox(p, q) a degenerate rectangle. Define Rver and Rquad

analogously. Let Ahor, Aver, and Aquad be the subsets of the plane that are
defined by the union of the rectangles in Rhor, Rver, and Rquad, respectively.

Any Manhattan network has to bridge the vertical (horizontal) gap between
the points of each pair in Zver(Zhor). Of course this can be done such that at the
same time the gaps of adjacent pairs are (partly) bridged. The corresponding
minimization problem is defined as follows:

Definition 3 (cover [KIA02]) A set of vertical line segments V is a cover of
(or covers) Rver, if any R ∈ Rver is covered, i.e. for any horizontal line ` with
R ∩ ` 6= ∅ there is a V ∈ V with V ∩ ` ∩ R 6= ∅. We say that V is a minimum
vertical cover (MVC) if V has minimum length among all covers of Rver. The
definition of a minimum horizontal cover (MHC) is analogous.

Figure 5 shows an example of an MVC. Since any MMN covers Rver and
Rhor, Kato et al. have the following result.

Lemma 1 ([KIA02]) The union of an MVC and an MHC has length bounded
by the length of an MMN.

To sketch our algorithm we need the following notations. Let N be a set
of line segments. We say that N satisfies a set of point pairs S ⊆

(
P
2

)
if N

contains a Manhattan p–q path for each {p, q} ∈ S. We use
⋃

N to denote the
corresponding set of points, i.e. the union of the line segments in N . Let ∂M
be the boundary of a set M ⊆ R2.

Our algorithm will proceed in four phases. In phase 0, we compute Z. In
phase I, we construct a network N1 that contains the union of a special MVC
and a special MHC and satisfies Zver ∪Zhor. In phase II, we identify a set R of
open regions in Aquad that do not intersect N1, but need to be bridged in order
to satisfy Zquad. The regions in R are staircase polygons. They give rise to two
sets of segments, N2 and N3, which are needed to satisfy Zquad. For each region
R ∈ R we put the segments that form ∂R \

⋃
N1 into N2, plus, if necessary, an

extra segment to connect R to N1. Finally, in phase III, we bridge the regions
in R by computing a set N3 of segments in the interior of the regions. This
yields a Manhattan network N = N1 ∪N2 ∪N3.

The novelty of our analysis is that we partition the plane into two areas
and compare N to an MMN in each area separately. The area A3 consists of
the interiors of the regions R ∈ R and contains N3. The other area A12 is the
complement of A3 and contains N1 ∪N2. For a fixed MMN Nopt we show that
|N ∩A12| ≤ 3|Nopt ∩A12| and |N ∩A3| ≤ 2|Nopt ∩A3| and thus |N | ≤ 3|Nopt|.
The details will be given in Section 5.

3 Neighbors and the generating set

We now define vertical and horizontal neighbors of points in P . Knowing these
neighbors helps to compute Z and R.

Definition 4 (neighbors) For a point p ∈ P and t ∈ {1, 2, 3, 4} let p.xnbor[t] =
nil if Q(p, t) ∩ P = {p}. Otherwise p.xnbor[t] points at the point that has min-
imum y-distance from p among all points in Q(p, t) ∩ P \ {p} with minimum

5

x-distance from p. The pointer p.ynbor[t] is defined by exchanging x and y in
the above definition.

All pointers of types xnbor and ynbor can be computed by a simple plane
sweep in O(n log n) time. The set Zver is then determined by passing the points
in lexicographical order and examining the pointers of type xnbor. This works
analogously for Zhor. Note that by Definition 1 each point q ∈ P is incident to
at most three rectangles of Rver, at most two of which can be (non-) degenerate.
We refer to points p ∈ P with (p, q) ∈ Zver as vertical predecessors of q and to
points r ∈ P with (q, r) ∈ Zver as vertical successors of q. We call a predecessor
or successor of q degenerate if it has the same x-coordinate as q. Note that
each point can have at most one degenerate vertical predecessor and successor,
and at most one non-degenerate vertical predecessor and successor. Horizontal
predecessors and successors are defined analogously with respect to Zhor. For
each t ∈ {1, 2, 3, 4} the pair (q, q.xnbor[t]) lies in Zquad if and only if q.xnbor[t] 6=
nil and no vertical or horizontal predecessor or successor lies in Q(q, t). We
conclude:

Lemma 2 All pointers of type xnbor and ynbor, and the generating set Z can
be computed in O(n log n) time.

4 Minimum covers

In general the union of an MVC and an MHC does not satisfy Zver ∪ Zhor.
Additional segments must be added to achieve this. To ensure that the total
length of these segments can be bounded, we need covers with a special property.
We say that a cover is nice if each cover segment contains an input point.

Lemma 3 For any nice MVC V and any nice MHC H there is a set S of line
segments such that V ∪H ∪ S satisfies Zver ∪ Zhor and |S| ≤W + H, where W
and H denote width and height of BBox(P), respectively. We can compute the
set S in linear time if for each R ∈ Rver (Rhor) we have constant-time access
to the segments in V (H) that intersect R.

Proof. We show that there is a set SV of horizontal segments with |SV | ≤ W
such that V ∪ SV satisfies Zver. Analogously it can be shown that there is a set
SH of vertical segments with |SH| ≤ H such that H ∪ SH satisfies Zhor. This
proves the lemma.

Let (p, q) ∈ Zver. If R = BBox(p, q) is degenerate, then by the definition of
a cover, there is a line segment s ∈ V with R ⊆ s, and thus V satisfies (p, q).

Otherwise R defines a non-empty vertical open strip σ(p, q) bounded by p
and q. Note that by the definition of Zver, R is the only rectangle in Rver that
intersects σ(p, q). This yields that the widths of σ(p, q) over all (p, q) ∈ Zver sum
up to at most W . Thus we are done, if we can show that there is a horizontal
line segment h such that the length of h equals the width of σ(p, q) and V ∪{h}
satisfies (p, q).

Now observe that no line segment in V intersects σ(p, q) since V is nice and
σ(p, q)∩P = ∅. Hence, the segments of V that intersect R in fact intersect only
the vertical edges of R. We assume w.l.o.g. that xp < xq and yp < yq (otherwise
rename and/or mirror P at the x-axis). This means that due to the definition

6

of Zver, there is no input point vertically above p. Thus, if there is a segment
sp in V that intersects the left edge of R, then sp must contain p. Analogously,
a segment sq in V that intersects the right edge of R must contain q. Since V
covers R, sp or sq must exist. Let ` be the horizontal through the topmost point
of sp or the bottommost point of sq. Then h = `∩R does the job, again due to
the fact that V covers R, see Figure 1. Clearly h can be determined in constant
time.

In order to see that every point set has in fact a nice MVC, we need the
following definitions. We restrict ourselves to the vertical case, the horizontal
case is analogous.

For a horizontal line ` consider the graph G`(V`, E`), where V` is the inter-
section of ` with the vertical edges of rectangles in Rver, and there is an edge
in E` if two intersection points belong to the same rectangle. We say that a
point v in V` is odd if v is contained in a degenerate rectangle or if the number
of points to the left of v that belong to the same connected component of G` is
odd, otherwise we say that v is even. For a vertical line g let an odd segment be
an inclusion-maximal connected set of odd points on g. Define even segments
accordingly. For example, the segment s (drawn bold in Figure 6) is an even
segment, while f \ s is odd. We say that parity changes in points where two
segments of different parity touch. We refer to these points as points of chang-
ing parity. The MVC with the desired property will simply be the set of all
odd segments. The next lemma characterizes odd segments, especially item (v)
prepares their computation. Strictly speaking we have to state whether the end-
points of each odd segment are odd too, but since a closed segment has same
length as the corresponding open segment, we consider odd segments closed.

Lemma 4 Let g : x = xg be a vertical line through some point p = (xp, yp) ∈ P .

(i) Let e be a vertical edge of a rectangle R ∈ Rver. Then either all points on
e are even or the only inclusion-maximal connected set of odd points on e
contains an input point.

(ii) Let R1, . . . , Rd and R′
1, . . . , R

′
d′ be the degenerate and non-degenerate rect-

angles in Rver that g intersects, respectively. Then d = |g ∩ P | − 1 and
d′ ≤ 2. If d = 0 then d′ > 0 and each R′

i has a corner in p. Else, if d > 0,
there are p1, p2 ∈ P such that g ∩ (R1 ∪ · · · ∪Rd) = Seg[p1, p2]. Then each
R′

i has a corner in either p1 or p2.

(iii) There are bg < tg ∈ R such that g ∩ Aver = {xg} × [bg, tg].

(iv) The line g contains at most two points of changing parity and at most one
odd segment. For each point c of changing parity there is an input point
with the same y-coordinate.

(v) If g has no point of changing parity, there is either no odd segment on g or
the odd segment is {xg} × [bg, tg]. If g has one point c of changing parity,
then either {xg}× [bg, yc] or {xg}× [yc, tg] is the odd segment. If g has two
points c and c′ of changing parity, then {xg}× [yc, yc′] is the odd segment.

Proof. For (i) we assume without loss of generality that e is the right vertical
edge of R = BBox(p, q) and that q is the topmost point of e. If R is degenerate

7

it is clear that all points on e (including p and q) are odd, and we are done.
Thus we can assume that xp < xq. Let p0 = q, p1 = p, p2 . . . , pk be the input
points in order of decreasing x-coordinate that span the rectangles in Rver that
are relevant for the parity of e. Let pi = (xi, yi). For 2 ≤ i ≤ k define
recursively yi = min{yi, yi−2} if i is even, and yi = max{yi, yi−2} if i is odd.
Let pi = (xi, yi), and let L be the polygonal chain through p0, p1, p2, p3, . . . , pk,
see Figure 6. Note that the parity of a point v on e is determined by the
number of segments of L that the horizontal hv through v intersects. If hv is
below pk, then it intersects a descending segment for each ascending segment
of L, hence v is even. If on the other hand hv is above pk, then it intersects an
ascending segment for each descending segment—plus p1p0, hence v is odd. In
other words, if yk = y0, all points of e are even, if yk = y1, all points of e are
odd, and otherwise parity changes only in (x0, yk) and q is odd. This settles (i).

(ii) follows directly from the definition of Zver, and (iii) follows from (ii), see
also Figure 2.

σ(p, q)

p

q

sq

sq

h

g g g g

R′
1

R′
2

R′
1 R′

2

R1

R′
1

R′
2

R′
1

p
p1

p2

bg

tg

bg

tg

bg

tg

bg

tg

Figure 1:
Illustration for
Lemma 3.

Figure 2: Illustration for
Lemma 4 (ii) and Lemma 4 (iii).

For (iv) we first assume d = 0. Then (ii) yields d′ ∈ {1, 2} and g ∩ P = {p}.
By (i) we know that the only inclusion-maximal connected set of odd points on
each vertical rectangle edge on g contains an input point, i.e. p. Thus there are
at most two points of changing parity and there is at most one odd segment on g.
Also according to the above proof of (ii), parity can change only in points of type
(x0, yk), and yk is the y-coordinate of some input point in the set {p0, . . . , pk}.

Now if d > 0 note that all degenerate rectangles consist only of odd points.
By (ii) we have that g ∩ (R1 ∪ · · · ∪ Rd) = Seg[p1, p2] and that each of the at
most two non-degenerate rectangles has a corner in either p1 or p2. Thus again
the statement holds.

For the proof of (v) we make a case distinction depending on d′. If d′ = 0, g
intersects only degenerate rectangles and thus there is no point of changing par-
ity on g and the odd segment is {xg}×[bg, tg]. Otherwise we assume w.l.o.g. that
e is contained in g. If e = {xg} × [bg, tg] holds, we are done. The argument of
(i) shows that either e contains no point of changing parity and hence all points
of e are of one parity, or c = c1 is the only point of changing parity and the odd
segment is {xg}× [c1, tg = yp]. If e 6= {xg}× [bg, tg], there is a further rectangle
Rp in Rver with Rp = BBox(p, r) and xp ≤ xr, yp < yr. If Rp is non-degenerate
all points on {xg} × [bg, tg] \ e are even, as there are no relevant rectangles to

8

the right. In this case we have no odd segment on g if e is completely even,
the odd segment is {xg} × [bg, yp = c1] if e is completely odd, and if c is a
point of changing parity the odd segment is {xg} × [c = c1, yp = c2]. If Rp is
degenerate, {xg} × [p, r] has to be added to the odd segments stated as before,
besides the same argument holds with a possibly rectangle Rr connected to r.

p

q

Q(p, 1)

v

h

e

s

f

 L
pk

pk

p0

p1

p2

p2

p3

p4

Figure 3: Point
pairs in Zver.

Figure 4: The pair
(p, q) is in Zquad.

Figure 5: The
odd MVC.

Figure 6: Proof
of Lemma 4.

Lemma 5 The set V of all odd segments is a nice MVC, the odd MVC.

Proof. Clearly V covers Rver. Let ` be a horizontal line that intersects Aver.
Consider a connected component C of G` and let k be the number of vertices
in C. If k is even then any cover must contain at least k/2 vertices of C, and V
contains exactly k/2. On the other hand, if k > 1 is odd then any cover must
contain at least (k − 1)/2 vertices of C, and V contains exactly (k − 1)/2. If
k = 1, any cover must contain the vertex, and so does V as the vertex belongs to
a degenerate rectangle. Thus V is an MVC. Lemma 4 (i) shows that V is nice.

Lemma 6 The odd MVC can be computed in O(n log n) time using linear space.

Proof. We compute the odd MVC by a plane sweep. Let x1 < · · · < xu

be the ascending sequence of all distinct x-coordinates. For each vertical line
gi : x = xi we determine in a preprocessing step the points bi and ti such
that gi ∩ Aver = [bi, ti]. For this it suffices to go through the input points in
lexicographical order. For each gi we introduce numbers βi and τi which we
initially set to∞. After the sweep βi and τi will determine the odd MVC in the
following way: If βi = τi =∞, then there is no odd segment on gi, otherwise gi

contains the odd segment xi × [βi, τi]. These two variables are sufficient since
according to Lemma 4,(iv) there is at most one odd segment on gi.

We use a sweep-line algorithm to compute the values βi and τi. As usual,
our sweep-line algorithm is supported by two data structures, the event-point
queue and the sweep-line status. According to Lemma 4,(iv) there is an input
point r with yc = yr for each point c of changing parity and according to v
we have to determine these points in order to get the odd segments. Thus, the
event-point queue can be implemented as a sorted list of all y-coordinates of
the input points. Note that the same y-value can occur more than once. This
ensures that at each event point only one event takes place. The sweep-line
status is a balanced binary tree in which each node corresponds to a connected
components of G`, where ` is the current position of the horizontal sweep line.

9

Our sweep line ` is a horizontal line sweeping all rectangles in Rver from bottom
to top.

While the sweep line moves from one event point to the next, the sweep-line
status maintains the connected components of G` in a balanced binary tree T .
Initially T is empty. Whenever ` reaches an event point, we update T . For each
component C of G` we store two indices lC and rC with the property that the
leftmost node of C lies on glC and the rightmost node on grC

. The tree T is
organized such that rC′ < lC for two components of G` if C ′ is a left child of
C, while rC < lC′ if C ′ is a right child.

The following component modifications can occur on an event: a component
appears or disappears, one component is replaced by a new one, a component
is enlarged or reduced, two or three components are joined or a component is
split into two or three components. We can decide in constant time which type
of event takes place, simply by evaluating bi, ti, and—if they exist—bi±1 and
ti±1, where i is the index of the line which contains the input point that caused
the current event. For each event we have to change the entries of at most three
components and update T accordingly.

Each of these update operations takes O(log n) time. For example if a com-
ponent is split into two, this component has to be found, its entries have to be
updated and a new component has to be created and inserted to T .

The correct values βi, τi for each line gi are computed during the sweep.
At any point of time, the values βi and τi indicate the information about the
odd segment on gi detected so far: βi = ∞ means no odd segment has been
found yet, while βi 6= ∞ says that there is an odd segment on gi with lower
endpoint (xi, βi). If additionally τi 6= ∞ then the upper endpoint has also
been detected yet and the odd segment on gi is xi × [βi, τi]. Thus, at each
event we have to check whether there are odd segments that start or end at
y`, the current y-value of the sweep line `. According to Lemma 4,v, points of
changing parity are always endpoints of odd segments, while bottom- or topmost
points of Aver ∩ gi may be endpoints. In order to find all endpoints, we have
to consider the old and new entries of changing components whenever T is
updated. Bottommost points occur, if a new components appears, a component
is enlarged or components are joined. Topmost points occur, if a component
disappears, is reduced or components are split. Points of changing parity can
occur if the extent of a component changes, components are joined or split or
one component is replaced by a new one. If we have found a bottommost point
bi, we check whether bi is odd and hence the lower endpoint of the odd segment
on gi is bi. We do this by examining lC , rC and i, where C is the component
that contains bi. If lC = rC (degenerate rectangle) or the parities of lC and i are
different, bi is odd and we set βi = bi. If we discover a point of changing parity,
we check whether it is the lower or upper endpoint of the odd segment on gi.
If βi is still ∞ the point of changing parity is the lower endpoint, otherwise the
upper. We set accordingly βi = y` or τi = y`. At a topmost point ti we only
have to check whether there is an odd segment on gi and whether ti is the upper
endpoint of the odd segment. This is the case if βi 6= ∞ and τi = ∞, we then
set τi = ti.

As there are at most 3n operations that change components during the
sweep, we have to handle O(n) of these checks. After sorting, each of the
n events of our sweep takes O(log n) time. Thus, the total running time is
O(n log n).

10

The odd MHC can be computed analogously.

5 An approximation algorithm

Our algorithm ApproxMMN proceeds in four phases, see Figure 10. In phase 0
we compute all pointers of type xnbor and ynbor and the set Z. In phase I we
satisfy all pairs in Zver∪Zhor by computing the network N1, the union of a nice
MVC Cver, a nice MHC Chor, and at most one additional line segment for each
rectangle in Rver ∪ Rhor. In phase II we compute the staircase polygons that
were mentioned in Section 2. The union of their interiors is area A3. Network
N2 consists of the boundaries of these polygons and segments that connect the
boundaries to N1. In phase III we compute a network N3 of segments in A3.
The resulting network N1 ∪N2 ∪N3 satisfies Z.

Phase 0. In phase 0 we compute all pointers of type xnbor and ynbor and
the set Z. We organize our data structures such that from now on we have
constant-time access to all relevant information such as xnbor, ynbor, vertical
and horizontal predecessors and successors from each point p ∈ P .

Phase I. First we compute the nice odd MVC and the nice odd MHC, denoted
by Cver and Chor, respectively. Then we compute the set S of additional segments
according to Lemma 3. We compute Cver, Chor and S such that from each point
p ∈ P we have constant-time access to the at most two cover segments (i.e.
segments in Cver ∪ Chor) that contain p and to the additional segments in the at
most four rectangles incident to p.

Lemmas 1, 3, and 6 show that N1 = Cver ∪ Chor ∪ S can be computed in
O(n log n) time and that |N1| ≤ |Nopt|+ H + W holds.

Phase II. In general N1 does not satisfy Zquad; further segments are needed.
In order to be able to bound the length of these new segments, we partition the
plane into two areas A12 and A3 as indicated in Section 2. We wanted to define
A3 such that |Nopt ∩ A3| were large enough for us to bound the length of the
new segments. However, we were not able to define A3 such that we could at
the same time (a) satisfy Zquad by adding new segments exclusively in A3 and
(b) bound their length. Therefore we put the new segments into two disjoint
sets, N2 and N3, such that N1 ∪ N2 ⊆ A12 and N3 ⊆ A3. This enabled us to
bound |N1 ∪N2| by 3|Nopt ∩ A12| and |N3| by 2|Nopt ∩ A3|.

We now prepare our definition of A3. Recall that Q(q, 1), . . . , Q(q, 4) are the
four quadrants of the Cartesian coordinate system with origin q. Let P (q, t) =
{p ∈ P ∩ Q(q, t) | (p, q) ∈ Zquad} for t = 1, 2, 3, 4. For example, in Figure 12,
P (q, 1) = {p1, . . . , p5}. Due to the definition of Zquad we have Q(p, t)∩P (q, t) =
{p} for each p ∈ P (q, t). Thus the area Aquad(q, t) =

⋃
p∈P (q,t) BBox(p, q) is a

staircase polygon. The points in P (q, t) are the “stairs” of the polygon and q
is the corner opposite the stairs. In Figure 12, Aquad(q, 1) is the union of the
shaded areas. In order to arrive at a definition of the area A3, we will start from
polygons of type Aquad(q, t) and then subtract areas that can contain segments
of N1 or are not needed to satisfy Zquad.

11

Let ∆(q, t) = int
(
Aquad(q, t) \ (Ahor ∪ Aver)

)
, where int(M) denotes the

interior of a set M ⊆ R2. In Figure 12, ∆(q, 1) is the union of the three areas
with dotted boundary. Let δ(q, t) be the union of those connected components
A of ∆(q, t), such that ∂A∩P (q, t) 6= ∅. In Figure 12, δ(q, 1) is the union of the
two dark shaded areas A and A.

Due to the way we derived δ(q, t) from Aquad(q, t), it is clear that each
connected component A of δ(q, t) is a staircase polygon, too. The stairs of A
correspond to the input points on ∂A, i.e. P (q, t) ∩ ∂A. Let qA be the point
on ∂A that is closest to q. This is the corner of A opposite the stairs. The
next lemma is very technical, but it is crucial for the estimation of our network
within the δ(q, t) regions.

Lemma 7 Areas of type δ(q, t) are pairwise disjoint.

Proof. For each pair (p, q) ∈ Zquad we define its forbidden area Fpq to be the
union of BBox(p, q) and the intersection of (a) the halfplane not containing p
that is bounded by the horizontal through q and (b) the open strip between the
verticals through p and q, see Figure 7. We have Fpq ∩ (P \ {p, q}) = ∅ since the
existence of a point r ∈ Fpq ∩ (P \ {p, q}) would contradict (p, q) ∈ Zquad.

Suppose there is a point s ∈ δ(q, t) ∩ δ(q′, t′) with (q, t) 6= (q′, t′). Clearly
q 6= q′ since δ(q, t) ⊂ int(Q(q, t)) and δ(q, t′) ⊂ int(Q(q, t′)) and int(Q(q, t)) ∩
int(Q(q, t′)) = ∅ for t 6= t′. Since δ(q, t), δ(q′, t′) ⊆ Aquad we know that there
are points p and p′ with (p, q), (p′, q′) ∈ Zquad such that s ∈ BBox(p, q) ∩
BBox(p′, q′). Let B = BBox(p, q) and B′ = BBox(p′, q′). Without loss of
generality, we assume that p is to the right and above q.

We know that p′, q′ 6∈ B since B ⊂ Fpq. Analogously p, q 6∈ B′. Let `(xq, yp)
and r(xp, yq) be the other two corners of B, see Figure 8. There are three cases:

Case I: B′ ∩ {`, r} = ∅.
Recall that B′ ∩ {p, q} = ∅ and that B ∩ B′ 6= ∅. Thus B′ lies in the
vertically unbounded open strip S1 = (xq, xp) × (−∞,∞) or in the hor-
izontally unbounded open strip S2 = (−∞,∞) × (yq, yp) determined by
two opposite edges of B, see Figure 8. (Note that p′ and q′ cannot lie
on the boundary of S1 or S2, otherwise (p, q) or (p′, q′) would not be in
Zquad.) Now if B′ ⊂ S1 (see the dashed rectangle in Figure 8), then p′ or
q′ lies in Fpq contradicting (p, q) ∈ Zquad. If on the other hand B′ ⊂ S2

(see the dotted rectangle in Figure 8) then p or q lies in Fp′q′ contradicting
(p′, q′) ∈ Zquad.

Case II: B′ ∩ {`, r} = {r}.
Now the upper left corner of B′ lies in B since again B′ ∩ {p, q} = ∅.
Thus the lower left corner of B′ is an input point (p′ or q′) but lies in Fpq

contradicting (p, q) ∈ Zquad.

q

p

Fpq

BBox(p, q)

Figure 7: The forbid-
den area Fpq is shaded.

q

p

B

S1

S2

`

r

Figure 8: Case I.

q

p

B

S1

S2

`

r

q′

p′

B′

Figure 9: Case III.

12

Case III: B′ ∩ {`, r} = {`}.
In this case the lower right corner of B′ lies in B and the upper right
corner of B′ lies above B in S2. If p′ was the upper right corner of B′, we
would have q ∈ Fp′q′ , which contradicts (p′, q′) ∈ Zquad. Thus p′ lies in S2

to the left of B and q′ in S1 above B, see Figure 9. Such a constellation is
indeed possible. Note, however, that B ∩ B′ ⊂ BBox(q, q′). Furthermore
{q, q′} ∈ Zver since BBox(q, q′) and the open strip bounded by the verticals
through q and q′ are completely contained in Fpq ∪ Fp′q′ and thus do
not contain any input points except q and q′. These observations yield
s ∈ B∩B′ ⊂ BBox(q, q′) ⊂ Aver, which contradicts s ∈ δ(q, t) since δ(q, t)
is contained in the complement of Aver.

We are now sure that we can treat each connected component A of δ(q, t)
independently. Finally we define A3 =

⋃
t∈{1,2,3,4}

⋃
q∈P δ(q, t) and A12 = R2 \

A3. This definition ensures that N1 ⊂ A12 as desired. The set N2 will be
constructed as follows: for each connected component A of A3, we put ∂A\

⋃
N1

into N2 and test whether N1 contains a Manhattan path from qA to q. If not,
we add a further segment to N2. This segment lies in Ahor and will be defined
below. Since Ahor as well as ∂A are contained in A12, we have N2 ⊂ A12. The
set N3 will be defined in phase III and will be arranged such that N3 ⊂ A3.

We now describe how to compute P (q, t) and how to find the connected
components of δ(q, t). We compute all sets P (q, t) by going through the input
points and checking their Zquad-partners. This takes linear time since |Zquad| =
O(n). We sort the points in each set P (q, t) according to their x-distance from
q. This takes O(n log n) total time. The remaining difficulty is to decide which
points in P (q, t) are incident to the same connected component of δ(q, t). In
Figure 12, {p1, p2} ⊂ ∂A and {p3, p4, p5} ⊂ ∂A. For our description how to
figure this out we assume t = 1 and P (q, 1) = (p1, . . . , pm). Note that each
connected component of δ(q, 1) corresponds to a sequence of consecutive points
in P (q, 1). By definition, for each connected component A of δ(q, 1) and all
pi, pj ∈ A we have pi.ynbor[3] = pj .ynbor[3].

We detect these sequences by going through p1, . . . , pm. Let pi be the current
point and let A be the current connected component. If and only if pi.ynbor[3] 6=
pi+1.ynbor[3] there is a rectangle RA ∈ Rhor that separates A from the next
connected component of δ(q, 1). The rectangle RA is defined by the point vA =
pi.ynbor[3] and its horizontal successor wA, which in this case is unique, see
Figure 12. It remains to specify the coordinates of the corner point qA of A.
Let p0 be the (unique) vertical successor of q. Then xqA

= xp0 and yqA
= ywA

.
At last, we want to make sure that N1∪N2 contains a Manhattan q–qA path.

The reason for this is that in phase III we will only compute Manhattan paths
from each pi ∈ ∂A to qA. Concatenating these paths with the q–qA path yields
Manhattan pi–q paths since qA ∈ BBox(q, pi). Note that segments in N3 lie in
A3 and thus cannot help to establish a q–qA path within BBox(q, qA) ⊂ A12.

The set N1 contains a Manhattan q–p0 path Pver and a Manhattan vA–wA

path Phor, since (q, p0) ∈ Zver and (vA, wA) ∈ Zhor. If qA ∈ Pver, then clearly
N1 contains a Manhattan q–qA path. However, N1 also contains a Manhattan
q–qA path if qA ∈ Phor. This is due to the fact that Pver and Phor intersect. If
qA 6∈ Pver∪Phor, then Phor contains the point cA = (xqA

, yvA
), which lies on the

13

vertical through qA on the opposite edge of RA. Thus, to ensure a Manhattan
q–qA path in N1 ∪N2, it is enough to add the segment sA = Seg[qA, cA] to N2.
We refer to such segments as connecting segments.

The algorithm ApproxMMN does not compute Pver and Phor explicitly, but
simply tests whether qA 6∈

⋃
N1. This is equivalent to qA 6∈ Pver ∪ Phor since

our covers are minimum and the bounding boxes of Pver and Phor are the only
rectangles in Rver ∪ Rhor that contain sA. Due to the same reason and to the
fact that cover edges are always contained in (the union of) edges of rectangles
in Rver ∪ Rhor, we have that sA ∩

⋃
N1 = {cA}. This shows that connecting

segments intersect N1 at most in endpoints. The same holds for segments in
N2 that lie on ∂A3. This is important as later on, in Section 6 we need that a
segment in N1 and a segment in N2 intersect at most in their endpoints. We
summarize:

Lemma 8 In O(n log n) time we can compute the set N2, which has the fol-
lowing properties: (i) N2 ⊂ A12, (ii) a segment in N1 and a segment in N2

intersect at most in their endpoints, and (iii) for each region δ(q, t) and each
connected component A of δ(q, t), N1 ∪N2 contains ∂A and a Manhattan q–qA

path.

Proof. The properties of N2 and the time bound for computing the connected
components of A3 follow from the description above. For each connected com-
ponent A of A3 the connecting segment sA and the set ∂A \

⋃
N1 can be

computed in O(m) time, where m = |P ∩ ∂A|. This is due to the fact that we
have constant-time access to each of the O(m) rectangles in Rhor ∪ Rver that
intersect ∂A and to the O(m) segments of N1 that lie in these rectangles.

Phase III. Now, we finally satisfy the pairs in Zquad. Due to Lemma 8 for
each connected component A of A3 it is enough to compute a set of segments
B(A) such that the union of B(A) and ∂A contains Manhattan paths from any
input point on ∂A to qA. We say that such a set B(A) bridges A. The set N3

will be the union over all sets of type B(A). The algorithm Bridge(A) that
we use to compute B(A) is similar to the “thickest-first” greedy algorithm for
rectangulating staircase polygons, see [GLN01]. However, we cannot use that
algorithm since the segments that it computes do not lie entirely in A3.

For our description of Bridge(A) we assume that A lies in a region of type
δ(q, 1). Let again (p1, . . . , pm) denote the sorted sequence of points on ∂A. Note
that ∂A already contains Manhattan paths that connect p1 and pm to qA. Thus
we are done if m ≤ 2. Otherwise let p′j = (xpj

, ypj+1), aj = Seg[(xqA
, yp′

j
), p′j]

and bj = Seg[(xp′
j
, yqA

), p′j] for j ∈ {1, . . . ,m − 1}, see Figure 13. We denote
|aj | by αj and |bj | by βj . From now on we identify staircase polygon A with the
tuple (qA, p1, . . . , pm). Let B be the set of segments that algorithm Bridge(A)
computes. Initially is B = ∅. The algorithm chooses an i ∈ {1, . . . ,m− 1} and
adds—if they exist—ai−1 and bi+1 to B. This satisfies

{
(pi, q), (pi+1, q)

}
. In

order to satisfy
{
(p2, q), . . . , (pi−1, q)

}
and

{
(pi+2, q), . . . , (pm−1, q)

}
, we solve

the problem recursively for the two staircase polygons
(
(xqA

, ypi), p1, . . . , pi−1

)
and

(
(xpi+1 , yqA

), pi+2, . . . , pm

)
.

Our choice of i is as follows. Note that α1 < · · · < αm−1 and β1 > · · · >
βm−1. Let Λ = {j ∈ {1, . . . ,m− 1} | αj ≤ βj}. If Λ = ∅, we have α1 > β1, i.e.

14

ApproxMMN(P)

Phase 0: Neighbors and generat. set

for each p ∈ P and t ∈ {1, 2, 3, 4} do
compute p.xnbor[t] and p.ynbor[t]

compute Z = Zver ∪ Zhor ∪ Zquad.

Phase I: Compute N1

compute odd MVC Cver and MHC Chor

compute set S of additional segments
N1 ← Cver ∪ Chor ∪ S, N2 ← ∅, N3 ← ∅

Phase II: Compute N2

compute A3

for each connected comp. A of A3 do
N2 ← N2 ∪ (∂A \

⋃
N1)

if qA 6∈
⋃

N1 then
N2 ← N2 ∪ {sA}

Phase III: Compute N3

for each connected comp. A of A3 do
N3 ← N3 ∪ Bridge(A)

return N = N1 ∪N2 ∪N3

Figure 10:

Bridge
(
A = (qA, p1, . . . , pm)

)
for i = 1 to m− 1 do

compute αi and βi

return SubBridge
(
1,m, 0, 0

)
SubBridge

(
k, l, xoff , yoff

)
Acurr = (qA + (xoff , yoff), pk, . . . , pl)
if l − k < 2 return ∅
Λ =

{
j ∈ {k, . . . , l − 1} :
αj − xoff ≤ βj − yoff

}
i = maxΛ ∪ {k}
if i < l−1 and αi−xoff ≤ βi+1−yoff

then i = i + 1
B = ∅
if i > 1 then

B = B ∪ {ai−1 ∩Acurr}
if i < l − 1 then

B = B ∪ {bi+1 ∩Acurr}
xnew = xpi+1 − xqA

ynew = ypi − yqA

return B ∪
∪ SubBridge(l, i− 1, xoff , ynew)
∪ SubBridge(i + 2, l, xnew, yoff)

Figure 11:

A is flat and broad. In this case we choose i = 1, which means that only b2 is
put into B. Otherwise let i′ = max Λ. Now if i′ < m− 1 and αi′ ≤ βi′+1, then
let i = i′ + 1. In all other cases let i = i′. The idea behind this choice of i is
that it yields a way to balance αi−1 and βi+1, which in turn helps to compare
αi−1 + βi+1 to min{αi, βi, αi−1 + βi+1}, i.e. the length of the segments needed
by any Manhattan network in order to connect pi and pi+1 to q, see also the
proof of Theorem 1.

To avoid expensive updates of the α- and β-values of the staircase polygons
in the recursion, we introduce offset values xoff and yoff that denote the x-
respectively y-distance from the corner of the current staircase polygon to the
corner qA of A. In order to find the index i in a recursion, we compare αj−xoff to
βj −yoff instead of αj to βj as in the definition of Λ above. Figure 11 shows the
pseudo code of algorithm Bridge(A) for a staircase polygon A of type δ(q, 1).

Running time and performance of algorithm Bridge(A) are as follows:

Theorem 1 Given a connected component A of A3 with |P ∩ ∂A| = m, al-
gorithm Bridge computes in O(m log m) time a set B of line segments with
|B| ≤ 2|Nopt ∩A| and

⋃
B ⊂ A that bridges A.

Proof. As for the running time, note that the monotone orders of α1, . . . , αm−1

and β1, . . . , βm−1 permit to find i by binary search in O(log m) time. The
recursion tree has O(m) nodes. Thus the algorithm runs in O(m log m) time.

15

p1

p3

p2

p4 p5

p0

A
qA

qA

cA

cA

A

RA

RA

vA = q
wA

vA

wA

qA

p1

pi

pi+1
ai−1

bi+1

xoff

yoff Aoff

Aright

pm

Atop

p′i

Figure 12: Notation: Aquad(q, 1) shaded,
∆(q, 1) with dotted boundary, and δ(q, 1) =
A ∪A′ dark shaded.

Figure 13:
Notation for
algorithm Bridge.

As for the performance, note that according to Lemma 7, A does not intersect
any other connected component of A3. The performance proof is similar to the
analysis of the greedy algorithm for rectangulation, see Theorem 10 in [GLN01].

Let i be the index determined in the first call to algorithm SubBridge, see
Figure 11. If i > 1, let Atop be the part of A properly above ai−1, otherwise
let Atop = ∅. If i < m − 1, let Aright be the part of A properly to the right of
bi+1, otherwise let Aright = ∅. Now let Aoff = A \ (Atop ∪ Aright). Note that
ai−1 ∪ bi+1 ⊂ Aoff .

By induction we can assume that |B(Atop)| ≤ 2|Nopt∩Atop| and |B(Aright)| ≤
2|Nopt ∩ Aright| . Thus, we are done if we can show that αi−1 + βi+1 ≤
2|Nopt∩Aoff | (*). The network Nopt has to contain segments in Aoff in order to
satisfy

{
(pi, q), (pi+1, q)

}
, more precisely |Nopt∩Aoff | ≥ min{αi, βi, αi−1+βi+1}.

Obviously (*) holds if Nopt contains segments of length at least αi−1 + βi+1 in
Aoff . Therefore, it remains to show that αi−1 + βi+1 ≤ 2 min{αi, βi}. We make
a case distinction depending on how i was derived. If Λ = ∅, then i = 1, α1 > β1

and Atop = ∅. In this case only b2 is added to B and β2 < min{α1, β1} = β1.
If i′ = maxΛ = m− 1, an analogous argument holds. Next we analyze the case
i′ < m− 1 and αi′ > βi′+1, where i is set to i′. This yields that βi+1 < αi and
thus αi−1 + βi+1 < 2αi. On the other hand, by the definition of Λ, we have
αi ≤ βi. Hence 2αi ≤ 2 min{αi, βi}. It remains to analyze the case i′ < m − 1
and αi′ ≤ βi′+1, where i is set to i′ + 1. This yields αi−1 ≤ βi and thus
αi−1 + βi+1 < 2βi. On the other hand, by the definition of Λ, we now have
αi > βi. Hence 2βi ≤ 2 min{αi, βi}.

We conclude this section by analyzing the running time of ApproxMMN.

Theorem 2 ApproxMMN runs in O(n log n) time and uses O(n) space.

Proof. Each of the four phases of our algorithm takes O(n log n) time: for
phase 0 refer to Lemma 2, for phase I to Lemmas 3 and 6, for phase II to
Lemma 8 and for phase III to Theorem 1. ApproxMMN outputs O(n) line
segments.

16

6 The approximation factor

As desired we can now bound the length of N in A12 and A3 separately. Theo-
rem 1 and Lemma 7 directly imply that |N ∩ A3| = |N3| ≤ 2|Nopt ∩ A3|. Note
that by |Nopt ∩A3| we actually mean |{s ∩A3 : s ∈ Nopt}|. It remains to show
that |N ∩ A12| = |N1 ∪N2| is bounded by 3|Nopt ∩ A12|.

Recall that by Lemmas 1 and 3, |N1| ≤ |Nopt|+H+W . Since the segments of
Nopt that were used to derive the estimation of Lemma 1 lie inAver∪Ahor ⊂ A12,
even the stronger bound |N1| ≤ |Nopt ∩ A12| + H + W holds. It remains to
analyze the length of N2 segments. Let Nver

2 (Nhor
2) denote the set of all vertical

(horizontal) segments in N2. We will compare the length of Nver
2 to the length

of Cver and the length of Nhor
2 to the length of Chor. Lemma 11 will yield the

desired length bounds. In the following we show how the length bound for
Nver

2 is obtained, this is the more complicated case as the connecting segments
are vertical. First, we need to distinct the connecting segments and all other
segments of N2. We call the non-connecting segments in N2 boundary segments
as they lie on ∂A3. Due to Lemma 8, segments in Nver

2 and segments in Cver
intersect at most in segment endpoints. Thus, a horizontal line ` with `∩P = ∅
does not contain any point that lies at the same time in

⋃
Cver and in

⋃
Nver

2 .
We restrict ourselves to such lines, this makes no difference in terms of overall
length as we exclude only a finite number of lines. In order to obtain Lemma 11,
we will characterize the sequences that are obtained by the intersection of such
a line ` with cover and boundary segments and cover and connecting segments,
see Lemma 9 and Lemma 10, respectively.

Lemma 9 Let ` be a horizontal line with ` ∩ P = ∅ and ` ∩ BBox(P) 6= ∅.
Consider the sequence of boundary and cover segments intersected by `. Then

(i) No more than two boundary segments are consecutive.

(ii) The left- and the rightmost segments are cover segments.

Proof. We show that each boundary segment s is (directly) preceeded or suc-
ceeded by a cover segment. This implies immediately (i). The kind of cover seg-
ment (predecessor or successor) that is assigned to a boundary segment shows
that no boundary segments can be left- or rightmost and thus (ii) follows.

We show the above statement for boundary segments that lie on the bound-
ary of a connected component A of A3. W.l.o.g. we assume that A is part of
a region of type δ(q, 1). Let p1, . . . , pm be the input points on ∂A ordered ac-
cording to x-distance from q. As earlier, let vA = p1.ynbor[3] and let wA be the
horizontal successor of vA. Let R denote the rectangle in Rver defined by the
point q and its vertical successor p0, see Figure 14. Let p` = s ∩ ` and let y` be
the y-coordinate of `. Note that p` ∈

⋃
Nver

2 and thus p` /∈
⋃
Cver. There are

two cases for the type of s.
First, s could be the boundary segment to the left of A. In this case s lies

on the right vertical edge of R. Let q` = (xq, y`) be the point opposite of p` on
the left vertical edge of R. Then q` ∈

⋃
Cver since R ∈ Rver and p` /∈

⋃
Cver.

Due to int(R) ⊂ int(A12), no boundary segments intersects the relative interior
of Seg[p`, q`], and thus p` is preceeded by q` ∈

⋃
Cver on `.

Second, s could be a vertical “staircase segment” to the right of A. In this
case we show that s is succeeded by a segment in Cver. There are two subcases:

17

either s is the left edge of BBox(pi, pi+1) for some i ∈ {1, . . . ,m − 1} or the
left edge of BBox(pm, wA). For the first subcase let β denote BBox(pi, pi+1).
We show that ` intersects a vertical cover segment in β. At the same time
we show that β ∩ A3 = ∅, and hence there is no boundary segment in the
interior of β. This is done by characterizing the point pairs (p′, q′) ∈ Zquad with
BBox(p′, q′)∩ int(β) 6= ∅ and showing that the connected component of A3 that
is incident to p′ does not intersect β. Let σ and τ be the vertical and horizontal
strips, respectively, that are induced by β, see Figure 14. The strip τ does not
contain any input point to the left of β since this would contradict pi and pi+1

lying in the same connected component of δ(q, 1). The strip σ does not contain
any input point below β since this would contradict (pi+1, q) ∈ Zquad. Let
β′ be β minus its right and top edge. There is no input point in β′, otherwise
there would be a point p ∈ β′ with (p, q) ∈ Zquad contradicting pi and pi+1 being
consecutive. Let r be the rightmost input point on the top edge of β and let t be
the topmost input point on the right edge of β. (Possibly pi = r and pi+1 = t.)
Since there is a point r′ ∈ Q(r, 4) with (r′, r) ∈ Zhor and a point t′ ∈ Q(t, 2) with
(t′, t) ∈ Zver, we must have that q′ = t and p′ ∈ Q(q′, 2), otherwise BBox(p′, q′)
would not intersect int(β). Observe that the rectangle BBox(r, r′) ∈ Rhor splits
BBox(p′, q′) into two connected components. However, the component incident
to p′ does not intersect int(β), and thus β ∩ A3 = ∅. Since BBox(t, t′) ∈ Rver

and yt′ ≥ ypi , it is clear that ` intersects a vertical cover segment in β, either
the one that is induced by the non-degenerate rectangle BBox(t, t′) if y` ≥ yt

or by the degenerate rectangle BBox(pi+1, t) itself if y` < yt.
Last, we examine the subcase that ` intersects β = BBox(pm, wA). We have

to proceed differently as we lose the property that no input point lies in the
vertical strip below β. Consider b = pm.xnbor[4] (allowing b = wA). We assume
w.l.o.g. ypm > yb otherwise let b = b.xnbor[4] until this is the case. Now, b could
lie in int(β), but only if there is a point b′ with xb′ = xb and yb′ < ywA

other-
wise there would be a point p ∈ int(β) with (p, q) ∈ Zquad. We discard this case
for a moment and assume that already yb < ywA

holds. Now, there is a point
p′ ∈ Q(b, 2) with (p′, b) ∈ Zver. By the construction, it is clear that yp′ ≥ ypm

and thus the vertical line through b splits β into two connected components.
For the component β′ incident to pm we can use the same argument as above
to show that β′ ∩A3 = ∅ since the vertical strip below β′ does not contain any
input points by construction. Hence, s is succeeded by a vertical cover segment
in BBox(p′, b). Now, back to the discarded case: if y` < yb, s is succeeded by
the degenerate rectangle BBox(b, b′), otherwise the same argument holds with
p′ ∈ Q(b, 2) and (p′, b) ∈ Zver.

For the following characterization of connecting segments note that such
segments lie only in non-degenerate rectangles of Rhor.

Lemma 10 Let ` be a horizontal line that intersects the interior of a rectangle
R` ∈ Rhor. Consider the sequence of connecting and cover segments in R`.
Then

(i) No connecting segment lies on a vertical edge of R`.

(ii) No more than two connecting segments are consecutive.

(iii) At least one of the two leftmost segments is a cover segment.

18

(iv) At least one of the two rightmost segments is a cover segment.

(v) The left- or rightmost segment is a cover segment.

Proof. In order to show (i), we show that no connecting segment is incident to
an input point. By construction, each connecting segment sA = Seg[qA, cA] lies
on a vertical edge of a rectangle R = BBox(q, p0) ∈ Rver and in a rectangle RA =
BBox(vA, wA) ∈ Rhor. By construction must R be non-degenerate, otherwise
qA ∈

⋃
Cver. Thus, cA 6= q. Clearly qA 6= q. Now {cA, qA} ∩ P \ {q} 6= ∅ would

contradict (p, q) ∈ Zquad for any point p ∈ ∂A∩P . Hence, sA is not incident to
an input point.

Now, since a connecting segment sA is not in Cver and lies on a vertical edge
of a rectangle R ∈ Rver it is pre- or succeeded by the cover segment on the
opposite edge of R. This directly shows (ii), (iii) and (iv).

Our proof for (v) is by contradiction: we assume that the leftmost seg-
ment s and the rightmost segment s′ in R` are connecting segments. Let
R` = BBox(v, w). Let w.l.o.g. v be the lower left point and w be the upper
right point of R`, see Figure 15. Let A and A′ be the connected components
of A3 with s = sA and s′ = sA′ . Note that RA = RA′ = R`. Let R and R′

be the rectangles in Rver whose vertical edges contain s and s′, respectively.
Clearly s must lie on the left edge of R and s′ on the right edge of R′. Thus,
A must be a region of type δ(q, 2) or δ(q, 3). First, assume A ⊆ δ(q, 2) for some
q ∈ P . Then would A lie above R and q below R, see Figure 15. However, this
is impossible. Let p be the leftmost point in P (q, t) ∩ ∂A. Then p has a Zhor

partner in Q(p, 4) which contradicts (p, q) being in Zquad. Thus, A ⊆ δ(q, 3)
and analogously A′ ⊆ δ(q′, 1) for some q′ ∈ P , see Figure 16. Now, the Manhat-
tan v–w path in N1 contains at least one of the corner points qA or qA′ . This
contradicts s and s′ both being connecting segments.

Combining Lemma 9 and Lemma 10 yields:

Lemma 11 |Nver
2 | ≤ 2|Cver| −H and |Nhor

2 | ≤ 2|Chor| −W .

Proof. For a horizontal line ` with `∩P = ∅ we want to compare the numbers
#Nver

2 and #Cver of segments in Nver
2 and Cver intersected by `, respectively.

If we show that #Nver
2 ≤ 2#Cver − 1, |Nver

2 | ≤ 2|Cver| − H follows. (Sweep
BBox(P) from bottom to top. The at most n lines that we have to exclude draw
no distinction in terms of length.) It remains to show that #Nver

2 ≤ 2#Cver−1.
Observe that due to Lemma 10 (i), ` intersects connecting segments at most
within the interior of a rectangle in Rhor. On the other hand, due to the
definition of A3, ` does not intersect any boundary segments within the interior
of such a rectangle. We investigate three cases.

First, consider the case that ` intersects no connecting segment. Thus, only
cover and boundary segments are intersected. By Lemma 9 at most two bound-
ary segments are consecutive and both the left- and rightmost intersected seg-
ments are cover segments. By a simple counting argument, this even yields
#Nver

2 ≤ 2#Cver − 2.
Second, consider the case that ` intersects no boundary segments. Then, by

Lemma 10 (ii) and (v), at most two connecting segments are consecutive and the
left- or rightmost segment is a cover segment. Now, further using Lemma 10 (iii)
and (iv) yields #Nver

2 ≤ 2#Cver − 1 as desired.

19

Third, consider the case that ` intersects both boundary and connecting
segments. Lemmas 9 (ii) and 10 (v) yield that the left- or rightmost intersected
segment is a cover segment. Thus if in the sequence of segments intersected by
` at most two segments in Nver

2 are consecutive, we are in the same situation as
in the second case. Hence #Nver

2 ≤ 2#Cver − 1.
However, there is a case in which more than two Nver

2 segments are consec-
utive: two consecutive boundary segments are succeeded (or preceeded) by a
rectangle R ∈ Rhor. Due to Lemma 10 (iii) and (iv) at most one of the fol-
lowing two segments within R is a connecting segment. Hence, no more than
three segments in Nver

2 are consecutive. If there are three consecutive segments
in Nver

2 , then one of them is a connecting segment that is left- or rightmost in
R. W.l.o.g. we assume that the connecting segment is leftmost in R. Then by
Lemma 10 (v) the rightmost segment in R is a cover segment. From this we
deduce two things: (a) since ` intersects at most one rectangle in Rhor, three
consecutive segments in Nver

2 occur at most once. (b) If there are three such seg-
ments, then by Lemma 9 (ii) both the left- and rightmost segments intersected
by ` are cover segments. Hence, we again have #Nver

2 ≤ 2#Cver − 1.
To bound the length of Nhor

2 segments is easier since connecting segments
are vertical. An analogous, simpler argument holds.

This finally settles the approximation factor of ApproxMMN.

Theorem 3 |N | ≤ 3|Nopt|.

Proof. By Lemma 11 and |Cver ∪ Chor| ≤ |Nopt ∩ A12| we have |N2| ≤ 2|Nopt ∩
A12|−H−W . Together with |N1| ≤ |Nopt|+H+W this yields |N1∪N2|/|Nopt∩
A12| ≤ 3. Theorem 1 and Lemma 7 show that |N3|/|Nopt ∩ A3| ≤ 2. Then,
the disjointness of A12 and A3 yields |N |/|Nopt| ≤ max{|N1 ∪ N2|/|Nopt ∩
A12|, |N3|/|Nopt ∩ A3|} ≤ 3.

7 Experiments

In Figure 18 a network computed by ApproxMMN and an MMN of the same
point set are depicted. The example indicates that there are point sets P for
which the ratio |N |/|Nopt| is arbitrarily close to 3, where N is the Manhattan
network that ApproxMMN computes for P . The reason for the particularly
bad performance of ApproxMMN on this point set is that neither the wA–q
path nor the p0–q path (bold solid line segments) contain the point qA. This
forces ApproxMMN to use the connecting segment sA. To show that our
algorithm performs better on average instances, we implemented ApproxMMN
and an exact solver and ran them on two classes of randomly generated point
sets.

7.1 Experimental set-up

We implemented ApproxMMN in C++ using the compiler gcc-3.3. The exact
solver is based on a mixed integer programming (MIP) formulation [WBS04] for
the MMN problem. We used the MIP solver Xpress-Optimizer (2003) [Das03]
by Dash Optimization with the C++ interface of the BCL library to compute

20

optimal solutions at least for small instances. The two classes of random point
sets, Square and HalfCircle, were generated as follows.

Square-k instances were generated by drawing n different points with uni-
form distribution from a kn × kn integer grid. We wanted to see the effects of
having more (k small) or less (k large) points with the same x- or y-coordinate.
If a pair of points shares a coordinate, the Manhattan path connecting them is
uniquely determined. We used k ∈ {1, 2, 5, 10}. For an example of a Square-01
instance see Figure 19.

HalfCircle-k instances consist of a point p1 at the origin o and n−1 points
on the upper half of the unit circle. The points are distributed as follows. The
angular range I = [0, π/4] is split into k subranges I1, . . . , Ik of equal length. We
used k ∈ {1, 2, 5, 10, 99}. Then n−1 random numbers r2, . . . , rn are drawn from
I. If the number ri falls into a subinterval of even index, it is mapped to the point
pi = (sin ri, cos ri), otherwise to pi = (− sin ri, cos ri). The resulting points pi

(except for the topmost point in each quadrant and the “bottommost” point in
each subinterval) form pairs (pi, p1) that lie in Zquad. This makes HalfCircle
instances very different from Square instances where usually only very few
point pairs belong to Zquad. For an example of a HalfCircle-02 instance, see
Figure 20.

We generated instances of the above types and solved them with Approx-
MMN and with the Xpress-Optimizer using the MIP formulation from [WBS04].
The results of our experiments can be found in Figures 21–23. In all graphs the
sample size, i.e. the number of points per instance, is shown on the x-axis. For
each sample size we generated 50 instances and averaged the results over those.
In Figure 21(a) the y-axis shows the performance ratio of ApproxMMN, i.e.
|N |/|Nopt|. In Figures 21(b) and 22 we compared the performance ratios of
ApproxMMN, a slightly modified variant of ApproxMMN, and the O(n3)-
time factor-4 approximation algorithm of Gudmundsson et al. [GLN01]. In the
graphs we skipped the factor-8 approximation algorithm [GLN01] because its
results were only slightly worse than those of the factor-4 approximation: the
difference was below 5%. We also tested the performance of the following simple
method to which we will refer as LPsolver+rounding. In the MIP formulation
there is a 0–1 variable ve for each edge e of the grid induced by the input
points. If ve = 1 then e is part of the solution, otherwise not. Our method LP-
solver+rounding solves the relaxation of the MIP and returns a network which
consists of all edges e with ve > 0. By the construction of the MIP it is clear
that this network is a Manhattan network.

In Figure 23 the y-axis measures the ratio between the running times of
the corresponding algorithms over the running time of ApproxMMN. The
asymptotic runtime of our implementation is Θ(n2), the CPU time consumption
was measured on an Intel Xeon machine with 2.6 GHz and 2 GB RAM under
the operating system Linux-2.4.20. The Xpress-Optimizer was run on the same
machine.

7.2 Results

The MIP solver required an unacceptable amount of time (i.e. at least several
hours) on HalfCircle-01 instances of more than 50 points and on Square-01
instances of more than 250 points. The performance ratio of ApproxMMN
seems to approach 1.1–1.2 on Square instances of increasing size, and 1.3–1.5

21

on HalfCircle instances, see Figure 21(a). On HalfCircle instances we
observed that with an increasing number k of subranges the performance of
ApproxMMN degrades. The reason for this is that each subrange induces a
connected component of type δ(o, 1) or δ(o, 2). Thus, the length of the network
N2 increases with an increasing number of subranges. Indeed, the length of N2

seems to be the bottleneck of our algorithm.
To reduce this effect we implemented a slightly modified variant of Approx-

MMN, to which we will refer as ApproxMMN-var. This variant changes only
the networks N2 and N3. We explain the approach exemplarily for a connected
component A of type δ(q, 1). Let again p1, . . . , pm be the input points on ∂A
ordered according to x-distance from the input point q in the lower left corner
of A. Let RA be the rectangle in Rhor that touches the bottom edge of A, see
Figure 14. Let vA and wA be the input points that span RA.

In phase II ApproxMMN-var adds only the segments Seg[p1, (xp1 , ywA
)]

and Seg[pm, (xp1 , ypm)] instead of the whole boundary of A to N2. Accord-
ingly, the connecting segment is now Seg[(xp1 , ywa), (xp1 , yvA

)]. As before, the
connecting segment is inserted only if necessary. In phase III, a similar algo-
rithm to algorithm Bridge is used to establish connections from p2, . . . , pm−1

to (xp1 , ywa
). Here we use the thickest-first algorithm introduced in [GLN01].

Now the parts of ∂A that represent the staircase between p1 and pm are only
inserted if the thickest-first algorithm requires this. However, the segments that
lie on ∂A are now inserted in N3, and there is the rub. We were not able to
prove |N3 ∩ A3| ≤ 2|Nopt ∩ A3| for ApproxMMN-var.

However, as we had hoped, the performance of ApproxMMN-var was bet-
ter than that of ApproxMMN. Figure 21(b) shows the performance of Ap-
proxMMN, ApproxMMN-var, the factor-4 approximation algorithm by Gud-
mundsson et al. [GLN01] and LPsolver+rounding. Exemplarily for the Square
instances, we included the graphs for the Square-10 instances. The behav-
ior of the algorithms was similar on the other Square instances, with slightly
better results. On Square instances ApproxMMN performed only slightly
worse than ApproxMMN-var. This is different on HalfCircle instances as
Figure 22 shows. Especially with an increasing number of subranges the in-
fluence of N2 on the total length of the network increases. The performance
of LPsolver+rounding was amazingly good. The worst performance ratio of
this method was 1.078. It occurred on a Square-10 instance with 25 points.
Moreover, LPsolver+rounding solved all Circle instances optimally.

The CPU time of ApproxMMN depends neither on the value of k nor on
the instance type. Solving instances with 3000 points took only about 5–6 sec-
onds. In contrast to that, the runtime of the exact solver heavily depended on
the value of k and even more on the instance type. Square instances were
solved the faster the smaller k, because then the probability for two points hav-
ing the same x- or y-coordinate is higher, which predetermines a larger number
of segments to be in the network. The average CPU time of the exact solver on
Square-10 instances with 250 points was about 170 seconds, compared to 0.1–
0.2 seconds for ApproxMMN. HalfCircle instances were solved slower the
smaller k, because then more grid points and grid segments lie in more rectangles
of Rquad, which means that the MIP formulation has more constraints and vari-
ables. Generally Square instances were solved much faster than HalfCircle
instances. This is due to the number of Zquad pairs, which is significant higher
in HalfCircle instances. The MIP formulation requires O(n2) variables and

22

constraints for a point pair in Zquad, while it requires only O(n) variables and
constraints for point pairs in Zver ∪ Zhor. (There are Zquad pairs that require
Θ(n2) variables and constraints.)

We wanted to see how fast the MIP solver becomes if it only has to com-
pute a solution as good as the one computed by ApproxMMN. The Xpress-
Optimizer allows to specify a bound that stops the branch-and-bound process
as soon as the target function is at least as good as the bound. We refer
to this version of the MIP solver as MIPsolver-approx and to the original ex-
act version as MIPsolver-opt. The results are shown in Figure 23, where the
average ratio between the running times of MIPsolver-approx, MIPsolver-opt
and LPsolver+rounding over the running time of ApproxMMN is shown. For
Square-10 instances, MIPsolver-approx is not much faster than MIPsolver-
opt. This changes with decreasing k: for Square-01 instances MIPsolver-
approx takes only about half the time of MIPsolver-opt. This is due to the
fact that the smaller k the more segments in a Manhattan network are pre-
determined. The method LPsolver+rounding turned out to run only slightly
faster than MIPsolver-opt. HalfCircle instances were solved relatively fast
by MIPsolver-approx. Solving HalfCircle-01 instances with 45 points took
MIPsolver-opt on average 2200 seconds CPU time as compared to 1.2 seconds
for MIPsolver-approx (and 0.01 seconds for ApproxMMN).

Finally we compared the values of the objective function of the MIP and
its LP relaxation. We found out that there are only few instances where the
relaxation yields a smaller value of the objective function than the MIP. For an
example of an instance with a gap between the two values, see [CNV05]. We
found gaps in only three Square-10 instances. Moreover, in all of these cases
the gap was very small, namely less than 0.011% of the value of the objective
function in the MIP formulation.

Note that the existence of a gap means that the face of the solution polyhe-
dron with maximum objective function value has only fractional corners, while
the existence of a fractional corner does not imply a gap. If, however, the LP
solver finds such a fractional corner and there is an integral corner, then our
rounding scheme returns a non-optimal network. We conjecture that there are
only few point configurations that cause a gap and that these configurations
cannot occur in HalfCircle instances.

7.3 Conclusion

For time-critical applications clearly ApproxMMN or ApproxMMN-var are
the methods of choice. They solve instances with 3000 points within 5–6 sec-
onds CPU time. On average point sets the networks they compute are usually
not more than 50% longer than an MMN. Within a threshold of 100 seconds
CPU time we were only able to compute optimal networks of the following
sizes: HalfCircle instances of at most 25 points and Square instances of at
most 175 points. The (polynomial-time!) method LPsolver+rounding returns
amazingly good results, but it is only slightly faster than MIPsolver-opt.

23

8 Open problems

The main open question is the complexity status of the MMN problem. Until
now there are not even hints whether it is polynomially solvable, it is NP-hard,
or has intermediate status. In the latter cases it would be of interest to find out
whether a polynomial-time approximation scheme exists or whether the MMN
problem cannot be approximated arbitrarily well. Very recently Chepoi et al.
[CNV05] gave a factor-2 approximation algorithm for the MMN problem that is
based on cleverly rounding the solution of a linear program, namely the relax-
ation of the MIP [WBS04] that we used as a benchmark for our experiments.
However, the running time of their algorithm is in Ω(n8) as their linear program
uses O(n2) variables and constraints. So it would be interesting to see whether
there is also a factor-2 approximation algorithm that runs in O(n log n) time.
In order to solve larger instances optimally, it would be of interest to design
a fixed-parameter algorithm. However, it is unclear to us what to choose as
parameter.

We conclude with two variants of the problem. The first variant is the real
MMN problem where apart from the point set an underlying rectilinear grid G
is given, e.g. the streets of Manhattan, on which the network has to lie. Again
each pair of points must be connected by a shortest possible rectilinear path and
the length of the network is to be minimized. However, the shortest rectilinear
path connecting two points can now be longer than a usual Manhattan path,
see Figure 17. The real MMN problem is at least as hard as the MMN problem
since G can be set to the grid induced by the input points.

Chepoi et al. [CNV05] suggest another variant of the MMN problem, the
F -restricted MMN problem. Given a point set P and a set F of pairs of points
in P , find a network of minimum length that connects the point pairs in F with
Manhattan paths. This variant also generalizes the MMN problem, which is an
F -restricted MMN problem where F is a generating set. The F -restricted MMN
problem is NP-hard, since it also generalizes the rectilinear Steiner arborescence
problem, which is NP-hard [SS00]. In the rectilinear Steiner arborescence prob-
lem only point sets P in the first quadrant are considered. The aim is to find a
rectilinear network of minimum length that connects all points in P to the origin
o. This is equivalent to solving the F -restricted MMN problem for P ′ = P ∪{o}
and F = {o} × P .

Acknowledgments

We would like to thank Hui Ma for implementing large parts of ApproxMMN,
and Anita Schöbel, Marc van Kreveld, Leon Peeters, Karin Höthker, Gautam
Appa, Dorit Hochbaum, and Raghavan Dhandapani for interesting discussions.

References

[ADM+95] Sunil Arya, Gautam Das, David M. Mount, Jeffrey S. Salowe, and
Michiel Smid. Euclidean spanners: Short, thin, and lanky. In Proc.
27th Annu. ACM Sympos. Theory Comput. (STOC’95), pages 489–
498, Las Vegas, 29 May–1 June 1995.

24

[AGM+90] Stephen F. Altschul, Warran Gish, Webb Miller, Eugene W. Myers,
and David J. Lipman. Basic local alignment search tool. J. Mol.
Biol., 215:403–410, 1990.

[Che89] L. Paul Chew. There are planar graphs almost as good as the com-
plete graph. J. Comput. Syst. Sci., 39:205–219, 1989.

[CNV05] Victor Chepoi, Karim Nouioua, and Yann Vaxés. A rounding al-
gorithm for approximating minimum Manhattan networks. http:
//www.lif-sud.univ-mrs.fr/~chepoi/papers.html, accessed on
March 2, 2005.

[Das03] Dash Optimization Inc. Xpress-Optimizer Reference Manual. War-
wickshire, U.K., 2003.

[Epp00] David Eppstein. Spanning trees and spanners. In Jörg-Rüdiger Sack
and Jorge Urrutia, editors, Handbook of Computational Geome-
try, pages 425–461. Elsevier Science Publishers B.V. North-Holland,
Amsterdam, 2000.

[GLN01] Joachim Gudmundsson, Christos Levcopoulos, and Giri
Narasimhan. Approximating a minimum Manhattan network.
Nordic J. Comput., 8:219–232, 2001.

[KIA02] Ryo Kato, Keiko Imai, and Takao Asano. An improved algorithm
for the minimum Manhattan network problem. In Prosenjit Bose
and Pat Morin, editors, Proc. 13th Annual International Sympo-
sium on Algorithms and Computation (ISAAC’02), volume 2518 of
Lecture Notes in Computer Science, pages 344–356, Vancouver, 20–
23 November 2002. Springer-Verlag.

[LAP03] Fumei Lam, Marina Alexandersson, and Lior Pachter. Picking
alignments from (Steiner) trees. Journal of Computational Biology,
10:509–520, 2003.

[SS00] Weiping Shi and Chen Su. The rectilinear Steiner arborescence
problem is NP-complete. In Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’00), pages
780–787, New York, 9–11 January 2000. ACM Press.

[WBS04] Alexander Wolff, Marc Benkert, and Takeshi Shirabe. The mini-
mum Manhattan network problem: Approximations and exact so-
lutions. In Proc. 20th European Workshop on Computational Ge-
ometry (EWCG’04), pages 209–212, Sevilla, 24–26 March 2004.

25

σp0

pi

pi+1

q

τA

qA

p1

pm

RA

R

β

vA

wA

r

t
r′

t′

p′

Figure 14: The area int(τ ∩ β)
does not intersect any boundary
segment, but a segment in Cver.

w

qv

p

s
A

R`

R

Figure 15: An impossible constellation:
(w, p) ∈ Zhor excludes (p, q) ∈ Zquad.

qA

qA′

s s′
v

w

R R′

A

A′

Figure 16: Not both s and s′ lie in N2.

q

wA

p0

qA

sA

q

wA

p0

qA

sA

Figure 17: The Real Manhattan
problem: a shortest path con-
necting two sites.

Figure 18: Left: network computed by
ApproxMMN, right: an MMN of the
same point set.

Figure 19: An MMN for a Square-01
instance with 15 points.

Figure 20: An MMN for a HalfCir-
cle-02 instance with 10 points.

26

1

1.1

1.2

1.3

1.4

1.5

0 50 100 150 200 250

HalfCircle-01
3

3

3
3
3
33

33

3

HalfCircle-10

+

++
+
+
+++++++++++

+
Square-01

2

2

2
2 2 2

2 2 2 2

2

Square-10

×

×

×

×

×

×
×

×
×

×

×

(a) ApproxMMN on various instance
classes

1

1.1

1.2

1.3

1.4

1.5

50 100 150 200 250

Factor4-GLN
3

3
3

3
3

3 3 3 3 3

3

ApproxMMN

+

+

+
+

+
+ + +

+ +

+
ApproxMMN-var

2

2

2 2 2 2 2 2 2 2

2

LPsolver+rounding

×
× × × × × × × × ×

×

(b) Various algorithms on Square-10 in-
stances

Figure 21: Performance of various algorithms.

1.3

1.35

1.4

1.45

1.5

1.55

10 15 20 25 30 35 40 45 50

Factor4-GLN

3

3

3

3

3

3

3
3

3

3

ApproxMMN
+

+

+

+
+

+
+

+
+

+
ApproxMMN-var

2 2
2

2
2

2 2
2 2

2

(a) HalfCircle-01 instances

1.1

1.2

1.3

1.4

1.5

1.6

1.7

10 20 30 40 50 60 70 80

Factor4-GLN3

3

3
3

3
3

3 3
3 3

3 3 3 3 3 3

3

ApproxMMN

+

+ +
+

+
+ + + + + + + + + + +

+
ApproxMMN-var

2

2

2
2

2 2 2 2 2 2 2 2 2 2 2 2

2

(b) HalfCircle-10 instances

Figure 22: Performance of various algorithms on HalfCircle instances.

0

200

400

600

800

1000

1200

1400

1600

1800

50 100 150 200 250

MIPsolver-opt

3
3

3

3

3
3

3 3

3

33

MIPsolver-approx

+ +
+

+

+
+

+

+

+

+

+
LPsolver+rounding

2
2

2

2

2

2

2

2

2

2

2

(a) Square-10 instances

0

50

100

150

200

250

300

10 15 20 25 30 35 40 45

MIPsolver-opt

3

3

3
3

MIPsolver-approx

+ + +
+

+
+

+

+

+
LPsolver+rounding

2

2

2

2

(b) HalfCircle-01 instances

Figure 23: Ratios of the running times of MIPsolver-opt, MIPsolver-approx,
and LP-solver+rounding over the running time of ApproxMMN.

27

	Introduction
	Previous work
	Our results

	Basic definitions
	Neighbors and the generating set
	Minimum covers
	An approximation algorithm
	The approximation factor
	Experiments
	Experimental set-up
	Results
	Conclusion

	Open problems
	References

