Skip to main content

A Comparative Study for Assessing the Reliability of Complex Networks Using Rules Extracted from Different Machine Learning Approaches

  • Conference paper
AI 2005: Advances in Artificial Intelligence (AI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3809))

Included in the following conference series:

  • 2420 Accesses

Abstract

In this paper three machine learning approaches, Neural Networks (NN), Support Vector Machines (SVM) and Neural Fuzzy Networks (FuNN) are used to extract rules and assess the reliability of complex networks. For NN and SVM models the TREPAN approach is proposed as a valid tool for extracting rules whereas the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used for tuning a previous set of rules derived by a fuzzy inference system and neural network approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jacobsen, H.A.: A Generic Architecture for Hybrid Intelligent Systems. In: IEEE Fuzzy Systems IEEE Fuzzy Systems, Anchorage, Alaska (1998)

    Google Scholar 

  2. Jain, L.C., Martin, N.M.: Fusion of Neural Networks, Fuzzy Sets, and Genetic Algorithms, Industrial Applications. CRC Press, Boca Raton (1998)

    Google Scholar 

  3. http://www.comp.nus.edu.sg/~pris/HybridSystems/DescriptionDetailed1.html

  4. Craven, M.W.: Extracting Comprehensible Models from Trained Neural Networks. Ph.D. Thesis. University of Wisconsin- Madison (1996)

    Google Scholar 

  5. http://www.biostat.wisc.edu/~craven/

  6. Jang, J.S., Sun, C.T.: Neuro-Fuzzy and Soft Computing. In: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, NJ (1997)

    Google Scholar 

  7. Lynn, N., Singpurwalla, N.: Bayesian assessment of network reliability. SIAM Review 40, 202–227 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Billinton, R., Allan, R.: Reliability Evaluation of Engineering Systems, Concepts and Techniques, 2nd edn. Plenum Press, New York (1992)

    MATH  Google Scholar 

  9. Marseguerra, M., Zio, E.: Basics of the Monte Carlo Method with Application to System Reliability. LiLoLe-Verlag GmbH (Publ. Co. Ltd.) (2002)

    Google Scholar 

  10. Grimaldi, R.P., Shier, D.R.: Redundancy and reliability of communication networks, www.math.clemson.edu/~shierd/Shier/abstracts/randr.html

  11. Reingold, E., Nievergelt, J., Deo, N.: Combinatorial Algorithms: Theory and Practice. Prentice Hall, New Jersey (1977)

    Google Scholar 

  12. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice Hall, New Jersey (1982)

    MATH  Google Scholar 

  13. Foresee, F.D., Hagan, M.T.: Gauss-Newton Approximation to Bayesian Regularization. In: Proc. of IJCNN 1997 (1997)

    Google Scholar 

  14. Cortes, C., Vapnik, V.: SVM. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

  15. Lin, C.T., Lee, C.S.G.: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Prentice-Hall, NJ (1996)

    Google Scholar 

  16. http://divcom.otago.ac.nz/infoscie/kel/cbiis.htm

  17. Trepan – Matlab, Available at http://www.cmdmport.ac.uk/biomine

  18. MathWorks, MatLab 6.5 R13 (2002)

    Google Scholar 

  19. Kasabov, N.: Investigating the Adaptation and Forgetting in Fuzzy Neural Networks Through a Method of Training and Zeroing. In: ICNN 1996, pp. 118–123 (1996)

    Google Scholar 

  20. Yoo, Y.B., Deo, N.: A Comparison of Algorithm for Terminal-Pair Relia- bility. IEEE Transaction on Reliability 37(2), 210–215 (1988)

    Article  Google Scholar 

  21. Veropoulos, K., Camppbell, C.N.: Controlling the Sensitivity of Support Vector Machines. In: Proceedings of the IJCAI 1999 (1999)

    Google Scholar 

  22. Cawley, G.C.: MATLAB Support Vector Machine Toolbox v. 0.54. University of East Anglia, Norwich, U.K, Available at http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox

  23. Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A Practical Guide to Support Vector Classification, Available at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

  24. Rocco, C., Muselli, M.: Empirical models based on machine learning techniques for determining ARE. Reliability Engineering and Safety S 83, 301–309 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Torres D., D.E., Rocco S., C.M. (2005). A Comparative Study for Assessing the Reliability of Complex Networks Using Rules Extracted from Different Machine Learning Approaches. In: Zhang, S., Jarvis, R. (eds) AI 2005: Advances in Artificial Intelligence. AI 2005. Lecture Notes in Computer Science(), vol 3809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11589990_119

Download citation

  • DOI: https://doi.org/10.1007/11589990_119

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30462-3

  • Online ISBN: 978-3-540-31652-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics