Abstract
Collaborative recommendation is one of widely used recommendation systems, which recommend items to visitor on a basis of referring other’s preference that is similar to current user. User profiling technique upon Web transaction data is able to capture such informative knowledge of user task or interest. With the discovered usage pattern information, it is likely to recommend Web users more preferred content or customize the Web presentation to visitors via collaborative recommendation. In addition, it is helpful to identify the underlying relationships among Web users, items as well as latent tasks during Web mining period. In this paper, we propose a Web recommendation framework based on user profiling technique. In this approach, we employ Probabilistic Latent Semantic Analysis (PLSA) to model the co-occurrence activities and develop a modified k-means clustering algorithm to build user profiles as the representatives of usage patterns. Moreover, the hidden task model is derived by characterizing the meaningful latent factor space. With the discovered user profiles, we then choose the most matched profile, which possesses the closely similar preference to current user and make collaborative recommendation based on the corresponding page weights appeared in the selected user profile. The preliminary experimental results performed on real world data sets show that the proposed approach is capable of making recommendation accurately and efficiently.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, R., Aggarwal, C., Prasad, V.: A Tree Projection Algorithm for Generation of Frequent Itemsets. Journal of Parallel and Distributed Computing 61, 350–371 (1999)
Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Chen, P.S. (ed.) Proceedings of the International Conference on Data Engineering (ICDE), pp. 3–14. IEEE Computer Society Press, Taipei (1995)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal Royal Statist. Soc. B 39, 1–38 (1977)
Han, E., Karypis, G., Kumar, V., Mobasher, B.: Hypergraph Based Clustering in High-Dimensional Data Sets: A Summary of Results. IEEE Data Engineering Bulletin 21, 15–22 (1998)
Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An Algorithmic Framework for Performing Collaborative Filtering. In: Proceedings of the 22nd ACM Conference on Researchand Development in Information Retrieval (SIGIR 1999), Berkeley, CA (1999)
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS) 22, 5–53 (2004)
Jin, X., Zhou, Y., Mobasher, B.: A Unified Approach to Personalization Based on Probabilistic Latent Semantic Models of Web Usage and Content. In: Proceedings of the AAAI 2004 Workshop on Semantic Web Personalization (SWP 2004), San Jose (2004)
Joachims, T., Freitag, D., Mitchell, T.: Webwatcher: A tour guide for the world wide web. In: The 15th International Joint Conference on Artificial Intelligence (ICJAI 1997), Nagoya, Japan, pp. 770–777 (1997)
Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., Riedl, J.: Grouplens: Applying Collaborative Filtering to Usenet News. Communications of the ACM 40, 77–87 (1997)
Mobasher, B.: Web Usage Mining and Personalization. In: Singh, M.P. (ed.) Practical Handbook of Internet Computing. CRC Press, Boca Raton (2004)
Mobasher, B., Dai, H., Nakagawa, M., Luo, T.: Discovery and Evaluation of Aggregate Usage Profiles for Web Personalization. Data Mining and Knowledge Discovery 6, 61–82 (2002)
Perkowitz, M., Etzioni, O.: Adaptive Web Sites: Automatically Synthesizing Web Pages. In: Proceedings of the 15th National Conference on Artificial Intelligence, pp. 727–732. AAAI, Madison (1998)
Xu, G., Zhang, Y., Zhou, X.: A Latent Usage Approach for Clustering Web Transaction and Building User Profile. In: The First International Conference on Advanced Data Mining and Applications (ADMA 2005), pp. 31–42. Springer, Wuhan (2005)
Xu, G., Zhang, Y., Zhou, X.: Using Probabilistic Semantic Latent Analysis for Web Page Grouping. In: 15th International Workshop on Research Issues on Data Engineering: Stream Data Mining and Applications (RIDE-SDMA 2005), Tokyo, Japan (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xu, G., Zhang, Y., Zhou, X. (2005). Towards User Profiling for Web Recommendation. In: Zhang, S., Jarvis, R. (eds) AI 2005: Advances in Artificial Intelligence. AI 2005. Lecture Notes in Computer Science(), vol 3809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11589990_44
Download citation
DOI: https://doi.org/10.1007/11589990_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30462-3
Online ISBN: 978-3-540-31652-7
eBook Packages: Computer ScienceComputer Science (R0)