Skip to main content

Subquadratic Algorithms for Workload-Aware Haar Wavelet Synopses

  • Conference paper
FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3821))

  • 741 Accesses

Abstract

Given a signal A of N dimensions, the problem is to obtain a representation R for it that is a linear combination of vectors in the dictionary H of Haar wavelets. The quality of the representation R is determined by B, the number of vectors from H used, and δ, the error between R and A. Traditionally, δ has been the sum squared error ε R=∑ i (R[i]–A[i])2, in which case, Parseval’s theorem from 1799 helps solve the problem of finding the R with smallest ε R in O(N) time.

Recently, motivated by database applications, researchers have sought other notions of error such as

  • workload-aware error, or \(\epsilon_{{\mathbf R}}^{\pi}=\sum_i \pi[i] ({\mathbf R}[i]-{\mathbf A}[i])^2\), where π[i] is the workload or the weight for i, and

  • maximum pointwise absolute error, eg., \(\epsilon_{{\mathbf R}}^{\infty}=\max_i |{\mathbf R}[i]-{\mathbf A}[i]|\).

Recent results give Ω(N 2) time algorithms for finding R that minimize these errors.

We present subquadratic algorithms for versions of these problems. We present a near-linear time algorithm to minimize ε R π when π is compressible. To minimize ε R  ∞ , we give an O(N 2 − −  ε) time algorithm. These algorithms follow a natural dynamic programming approach developed recently, but the improvements come from exploiting local structural properties of the Haar wavelet representations of signals we identify.

Sparse approximation theory is a mature area of Mathematics that has traditionally studied signal representations with Haar wavelets. It is interesting that the past few years have seen new problems in this area motivated by Computer Science concerns: we pose a few new additional problems and some partial results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aboulnaga, A., Chaudhuri, S.: Self-tuning histograms: building histograms without looking at data. In: Proc. SIGMOD, pp. 181–192 (1999)

    Google Scholar 

  2. Beauchamp, K.G.: Walsh functions and their applications (1975)

    Google Scholar 

  3. Deligiannakis, A., Garofalakis, M., Roussopoulos, N.: A fast approximation scheme for probabilistic wavelet synopses. In: Proc. of SSDBM (2005)

    Google Scholar 

  4. Deligiannakis, A., Roussopoulos, N.: Extended wavelets for multiple measures. In: Proc. SIGMOD (2003)

    Google Scholar 

  5. Devore, R., Lorentz, G.: Constructive approximation. Springer, Heidelberg (1991)

    Google Scholar 

  6. Egiazarian, K., Astola, J.: Tree-structured Haar transforms. Journal of Mathematical Imaging and Vision 16, 269–279 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ganti, V., Lee, M., Ramakrishnan, R.: ICICLES: Self-tuning samples for approximate query answering. VLDB Journal, 176–187 (2000)

    Google Scholar 

  8. Garofalakis, M., Kumar, A.: Deterministic wavelet thresholding for maximum error metrics. In: Proc. PODS (2004)

    Google Scholar 

  9. Garofalakis, M., Gibbons, P.: Wavelet Synopses with Error Guarantees. In: Proc. of ACM SIGMOD, pp. 476–487 (2002)

    Google Scholar 

  10. Gilbert, A., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Fast, small space algorithms for approximate histogram maintenance. In: Proc. STOC, pp. 389–398 (2002)

    Google Scholar 

  11. Gilbert, A., Muthukrishnan, S., Strauss, M.: Approximation of functions over redundant dictionaries using coherence. In: Proc. ACM-SIAM SODA (2003)

    Google Scholar 

  12. Guha, S.: Space Efficiency in Synopsis Construction Algorithms. In: Proc. VLDB (2005)

    Google Scholar 

  13. Guha, S., Harb, B.: Wavelet Synopsis for Data Streams: Minimizing Non-Euclidean Error. In: Proc. KDD (2005)

    Google Scholar 

  14. Guha, S., Harb, B.: Approximation Algorithms for Wavelet Transform Coding of Data Streams. To appear in Proc. ACM-SIAM SODA (2006)

    Google Scholar 

  15. Jagadish, H., Koudas, N., Muthukrishnan, S., Poosala, V., Sevcik, K., Suel, T.: Optimal Histograms with Quality Guarantees. In: Proc. VLDB, pp. 275–286 (1998)

    Google Scholar 

  16. Haar, A.: Zur theorie der orthogonalen functionsysteme. Math Annal., Vol 69, 331–371 (1910)

    Article  MATH  MathSciNet  Google Scholar 

  17. Markl, V., Lohman, G., Raman, V.: LEO: An automatic query optimizer for DB2. IBM Systems Journal 42(1) (2003); Aloso, Proc. VLDB (2002)

    Google Scholar 

  18. Matias, Y., Urieli, D.: Optimal workload-based wavelet synopses. In: Proc. Intl Conf on Database Technology (2004)

    Google Scholar 

  19. Matias, Y., Vitter, J., Wang, M.: Wavelet-based histograms for selectivity estimation. In: Proc. ACM SIGMOD, pp. 448–459 (1998)

    Google Scholar 

  20. Muthukrishnan, S.: Workload-optimal wavelet synopsis. DIMACS Technical Report 2004-25 (May 2004)

    Google Scholar 

  21. Muthukrishnan, S., Strauss, M., Zhang, X.: Workload-aware histograms on streams. To appear in Proc. ESA (2005); Also, DIMACS TR 2005

    Google Scholar 

  22. Parseval, M.: (1799), http://encyclopedia.thefreedictionary.com/Parseval’s+theorem

  23. Schmidt, R., Shahabi, C.: How to evaluate multiple range-sum queries progessively. In: Proc. PODS (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Muthukrishnan, S. (2005). Subquadratic Algorithms for Workload-Aware Haar Wavelet Synopses. In: Sarukkai, S., Sen, S. (eds) FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2005. Lecture Notes in Computer Science, vol 3821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11590156_23

Download citation

  • DOI: https://doi.org/10.1007/11590156_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30495-1

  • Online ISBN: 978-3-540-32419-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics