Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3821))

  • 739 Accesses

Abstract

We study the class of timed automata called eventual timed automata (ETA’s) obtained using guards based on the operator \(\Diamond\). In this paper we show that ETA’s form a decidable class of timed automata via a flattening to non-recursive ETA’s followed by a reduction to 1-clock alternating timed automata. We also study the expressiveness of the class of ETA’s and show that they compare favourably with other classes in the literature. Finally we show that class obtained using the dual operator \(\Diamond\!\!\!\!\!-\) is also decidable, though the two operators together lead to an undecidable class of languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Dill, D.: A theory of timed automata. In: Theoretical Computer Science, vol. 126, pp. 183–235. Elsevier, Amsterdam (1994)

    Google Scholar 

  2. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43, 116–146 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class of timed automata. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 1–13. Springer, Heidelberg (1994)

    Google Scholar 

  4. D’Souza, D.: Raj Mohan M: Eventual Timed Automata, IISc-CSA-TR- 2005-8, Technical Report, Indian Institute of Science, Bangalore (2005)

    Google Scholar 

  5. D’Souza, D., Prabhakar, P.: On the expressiveness of MTL in the pointwise and continuous semantics, IISc-CSA-TR-2005-7, Technical Report, Indian Institute of Science, Bangalore (2005)

    Google Scholar 

  6. D’Souza, D., Tabareau, N.: On timed automata with input-determined guards. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 68–83. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Henzinger, T., Raskin, J., Schobbens, P.: The regular real-time languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 580–591. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Koymans, R.: Specifying real-time properties with metric temporal logic. Real Time Systems 2(4), 255–299 (1990)

    Article  Google Scholar 

  9. Lasota, S., Walukiewicz, I.: Alternating timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 250–265. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Ouaknine, J., Worrel, J.: On the decidability of metric temporal logic. In: Proc. LICS 2005 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

D’Souza, D., Mohan, M.R. (2005). Eventual Timed Automata. In: Sarukkai, S., Sen, S. (eds) FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2005. Lecture Notes in Computer Science, vol 3821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11590156_26

Download citation

  • DOI: https://doi.org/10.1007/11590156_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30495-1

  • Online ISBN: 978-3-540-32419-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics