Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3821))

  • 857 Accesses

Abstract

In this paper, we formalize two stepwise approaches, based on pseudo-random generators, for proving P≠NP and its arithmetic analog: Permanent requires superpolynomial sized arithmetic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal On, M.: derandomizing tests for certain polynomial identities. In: Proceedings of the Conference on Computational Complexity, pp. 355–362 (2003)

    Google Scholar 

  2. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathematics 160(2), 781–793 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple constructions of almost fc-wise independent random variables. In: Proceedings of Annual IEEE Symposium on Foundations of Computer Science, pp. 544–553 (1990)

    Google Scholar 

  4. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo-random bits. SIAM Journal on Computing 13, 850–864 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Damm, C.: DET=L#l. Technical Report Informatik-preprint 8, Fachbereich In- formatik der Humboldt Universitat zu Berlin (1991)

    Google Scholar 

  6. Fortnow, L.: The role of relativization in complexity theory. In: Bulletin of the European Association for Theoretical Computer Science, Complexity Theory Column (1994)

    Google Scholar 

  7. Fortnow, L.: Time-space tradeoffs for satisfiability. J. Comput. Sys. Sci. 60(2), 337–353 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Håstad, J.: Computational limitations on small depth circuits.PhD thesis, Massachusetts Institute of Technology (1986)

    Google Scholar 

  9. Hastad, J., Impagliazzo, R., Levin, L., Luby, M.: A pseudo-random generator from any one-way function. SIAM Journal on Computing, 221–243 (1998)

    Google Scholar 

  10. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits Derandomizing the XOR lemma. In: Proceedings of Annual ACM Symposium on the Theory of Computing, pp. 220–229 (1997)

    Google Scholar 

  11. Kabanets, V., Impagliazzo, R.: Derandomizing polyonmial identity tests means proving circuit lower bounds. In: Proceedings of Annual ACM Symposium on the Theory of Computing, pp. 355–364 (2003)

    Google Scholar 

  12. Mulmuley, K., Sohoni, M.: Geometric complexity theory I: An approach to the P vs. NP and other related problems. SIAM Journal on Computing 31(2), 496–526 (2002)

    MathSciNet  Google Scholar 

  13. Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and applications. In: Proceedings of Annual ACM Symposium on the Theory of Computing, pp. 213–223 (1990)

    Google Scholar 

  14. Nisan, N., Wigderson, A.: Hardness vs. randomness. J. Comput. Sys. Sci 49(2), 149–167 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Razborov, A.: Lower bounds for the monotone complexity of some boolean functions. Doklady Akademii Nauk SSSR 281(4), 798–801 (1985); English translation in Soviet Math. Doklady 31, 354–357 (1985)

    Google Scholar 

  16. Razborov, A., Rudich, S.: Natural proofs. In: Proceedings of Annual ACM Symposium on the Theory of Computing, pp. 204–213 (1994)

    Google Scholar 

  17. Reingold, O.: Undirected s-t-connectivity in logspace. In: Proceedings of Annual ACM Symposium on the Theory ofComputing, pp. 376–385 (2005)

    Google Scholar 

  18. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980)

    Article  MATH  Google Scholar 

  19. Toda, S.: Counting problems computationally equivalent to the determinant (1991) (manuscript)

    Google Scholar 

  20. Valiant, L., Skyum, S., Berkowitz, S., Rackoff, C.: Fast parallel computation of polynnomials using few processors. SIAM Journal on Computing 12, 641–644 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Vinay, V.: Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In: Selman, A.L. (ed.) Structure in Complexity Theory. LNCS, vol. 223, pp. 270–284. Springer, Heidelberg (1991)

    Google Scholar 

  22. Yao, A.C.: Theory and applications of trapdoor functions. In: Proceedings of Annual IEEE Symposium on Foundations of Computer Science, pp. 80–91 (1982)

    Google Scholar 

  23. Zippel, R.E.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.) EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agrawal, M. (2005). Proving Lower Bounds Via Pseudo-random Generators. In: Sarukkai, S., Sen, S. (eds) FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2005. Lecture Notes in Computer Science, vol 3821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11590156_6

Download citation

  • DOI: https://doi.org/10.1007/11590156_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30495-1

  • Online ISBN: 978-3-540-32419-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics