Abstract
In this paper, we formalize two stepwise approaches, based on pseudo-random generators, for proving P≠NP and its arithmetic analog: Permanent requires superpolynomial sized arithmetic circuits.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal On, M.: derandomizing tests for certain polynomial identities. In: Proceedings of the Conference on Computational Complexity, pp. 355–362 (2003)
Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathematics 160(2), 781–793 (2004)
Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple constructions of almost fc-wise independent random variables. In: Proceedings of Annual IEEE Symposium on Foundations of Computer Science, pp. 544–553 (1990)
Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo-random bits. SIAM Journal on Computing 13, 850–864 (1984)
Damm, C.: DET=L#l. Technical Report Informatik-preprint 8, Fachbereich In- formatik der Humboldt Universitat zu Berlin (1991)
Fortnow, L.: The role of relativization in complexity theory. In: Bulletin of the European Association for Theoretical Computer Science, Complexity Theory Column (1994)
Fortnow, L.: Time-space tradeoffs for satisfiability. J. Comput. Sys. Sci. 60(2), 337–353 (2000)
Håstad, J.: Computational limitations on small depth circuits.PhD thesis, Massachusetts Institute of Technology (1986)
Hastad, J., Impagliazzo, R., Levin, L., Luby, M.: A pseudo-random generator from any one-way function. SIAM Journal on Computing, 221–243 (1998)
Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits Derandomizing the XOR lemma. In: Proceedings of Annual ACM Symposium on the Theory of Computing, pp. 220–229 (1997)
Kabanets, V., Impagliazzo, R.: Derandomizing polyonmial identity tests means proving circuit lower bounds. In: Proceedings of Annual ACM Symposium on the Theory of Computing, pp. 355–364 (2003)
Mulmuley, K., Sohoni, M.: Geometric complexity theory I: An approach to the P vs. NP and other related problems. SIAM Journal on Computing 31(2), 496–526 (2002)
Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and applications. In: Proceedings of Annual ACM Symposium on the Theory of Computing, pp. 213–223 (1990)
Nisan, N., Wigderson, A.: Hardness vs. randomness. J. Comput. Sys. Sci 49(2), 149–167 (1994)
Razborov, A.: Lower bounds for the monotone complexity of some boolean functions. Doklady Akademii Nauk SSSR 281(4), 798–801 (1985); English translation in Soviet Math. Doklady 31, 354–357 (1985)
Razborov, A., Rudich, S.: Natural proofs. In: Proceedings of Annual ACM Symposium on the Theory of Computing, pp. 204–213 (1994)
Reingold, O.: Undirected s-t-connectivity in logspace. In: Proceedings of Annual ACM Symposium on the Theory ofComputing, pp. 376–385 (2005)
Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980)
Toda, S.: Counting problems computationally equivalent to the determinant (1991) (manuscript)
Valiant, L., Skyum, S., Berkowitz, S., Rackoff, C.: Fast parallel computation of polynnomials using few processors. SIAM Journal on Computing 12, 641–644 (1983)
Vinay, V.: Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In: Selman, A.L. (ed.) Structure in Complexity Theory. LNCS, vol. 223, pp. 270–284. Springer, Heidelberg (1991)
Yao, A.C.: Theory and applications of trapdoor functions. In: Proceedings of Annual IEEE Symposium on Foundations of Computer Science, pp. 80–91 (1982)
Zippel, R.E.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.) EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Agrawal, M. (2005). Proving Lower Bounds Via Pseudo-random Generators. In: Sarukkai, S., Sen, S. (eds) FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2005. Lecture Notes in Computer Science, vol 3821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11590156_6
Download citation
DOI: https://doi.org/10.1007/11590156_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30495-1
Online ISBN: 978-3-540-32419-5
eBook Packages: Computer ScienceComputer Science (R0)