Skip to main content

A Mathematical Foundation for Topology Awareness of P2P Overlay Networks

  • Conference paper
Grid and Cooperative Computing - GCC 2005 (GCC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 3795))

Included in the following conference series:

Abstract

In peer-to-peer (P2P) overlay networks, the mechanism of a peer randomly joining and leaving a network, causes a topology mismatch between the overlay and the underlying physical topology. This causes a large volume of redundant traffic in the underlying physical network as well as an extra delay in message delivery in the overlay network. Topology mismatch occurs because overlay networks are not aware of their underlying physical networks. In this paper we present a mathematical model for topology awareness of overlay networks (degree of matching between an overlay and its underlying physical network) and the efficiency of message delivery on them. We also after determining the computational complexity of the model, propose an optimization heuristic algorithm to increase topology awareness of P2P overlay networks. Then we present the results of running the algorithm on different kinds of random graphs and show, how we can implement the algorithm over P2P networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: Hypercup - hypercubes, ontologies and efficient search on p2p networks. In: International Workshop on Agents and Peer-to-Peer Computing, Bologna, Italy (2002)

    Google Scholar 

  2. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable p2p lookup service for internet applications. In: Proc. ACM SIGCOMM 2001 (2001)

    Google Scholar 

  3. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: Scalable content-addressable networks. In: Proc. ACM SIGCOMM 2001 (2001)

    Google Scholar 

  4. Kazaa (2003), http://www.kazaa.com

  5. Gnutella (2003), http://gnutella.wego.com

  6. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: International conference on Distributed Systems platforms (Middleware), pp. 329–350 (2001)

    Google Scholar 

  7. Zhuge, H., Liu, J., Feng, L., Sun, X., He, C.: Query routing in a peer-to-peer semantic link network. Computational Intelligence 21, 197–216 (2005)

    Article  MathSciNet  Google Scholar 

  8. Freedman, M., Mazieres, D.: Sloppy hashing and self-organizing clusters. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Saroui, S., Gummadi, K.P., Dunn, R.J., Gribble, S.D., Levy, H.M.: An analysis of intener content delivery systems. In: Proc. IEEE Fifth Symp. Operating Systems Design and Implementation (2002)

    Google Scholar 

  10. Sen, S., Wang, J.: Analyzing peer-to-peer traffic across large networks. In: Proc. ACM SIGCOMM Internet Measurement Workshop (2002)

    Google Scholar 

  11. Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Topologically-aware overlay construction and server selection. In: Proc. IEEE INFOCOM 2002 (2002)

    Google Scholar 

  12. Garces-Erice, L., Ross, K., Biersack, E., Felber, P., Urvoy-Keller, G.: Topology-centric lookup service. In: Stiller, B., Carle, G., Karsten, M., Reichl, P. (eds.) NGC 2003 and ICQT 2003. LNCS, vol. 2816, pp. 58–69. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Harvey, N.J.A., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: Skipnet: A scalable overlay network with practical locality properties. In: Proc. The Fourth USENIX Symposium on Internet Technologies and Systems USITS 2003 (2003)

    Google Scholar 

  14. Liu, Y., Xiao, L., Liu, X., Ni, L.M., Zhang, X.: Location awareness in unstructured peer-to-peer systems. IEEE Transactions on Parallel and Distributed Systems 16, 163–174 (2005)

    Article  Google Scholar 

  15. Ferreira, R.A., Jagannathan, S., Grama, A.: Enhancing locality in structured peer-to-peer networks. In: Proc. ICPADS 2004 Tenth International Conference on Parallel and Distributed Systems (2004)

    Google Scholar 

  16. Huffaker, B., Fomenkov, M., Plummer, D., Moore, D., Claffy, K.: Distance metrics in the internet. In: IEEE International Telecommunications Symposium, ITS (2002)

    Google Scholar 

  17. Francis, P., Jamin, S., Paxson, V., Zhang, L., Gryniewicz, D., Jin, Y.: An architecture for a global internet host distance estimation service. In: Proc. IEEE INFOCOM 1999 (1999)

    Google Scholar 

  18. Guyton, J.D., Schwartz, M.F.: Locating nearby copies of replicated internet servers. In: Proc. ACM SIGCOMM 1995 (1995)

    Google Scholar 

  19. Savage, S., Collins, A., Homan., E.: The end-to-end effects of internet path selection. In: Proc. ACM SIGCOMM 1999 (1999)

    Google Scholar 

  20. Paxson, V.: End-to-end routing behavior in the internet. In: Proc. ACM SIGCOMM 1996, pp. 25–38 (1996)

    Google Scholar 

  21. Ng, T.E., Zhang, H.: Predicting internet network distance with coordinates-based approaches. In: Proc. IEEE INFOCOM 2002 (2002)

    Google Scholar 

  22. Chen, Y., Katz, R.: On the placement of network monitoring sites (2001), http://www.cs.berkeley.edu/yanchen/vnms/

  23. Harper, L.: Optimal assignments of numbers to vertices. J. Soc. Industrial Appl. Math. 12, 131–135 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  24. Steiglitz, K., Bernstein, A.J.: Optimal binary coding of ordered numbers. J. Soc. Industrial Appl. Math. 13, 441–443 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  25. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, Englewood Cliffs (2001)

    Google Scholar 

  26. White, S., OMadadhain, J., Fisher, D., Boey, Y.B.: Jung-java universal network/graph framework (2004), http://jung.sourceforge.net/index.html

  27. Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. In: Proc. 32nd ACM Symposium on Theory of Computing (2000)

    Google Scholar 

  28. Eppstein, D., Wang, J.: A steady state model for graph power laws. ACM Computing Research Repository (2002)

    Google Scholar 

  29. Watts, D.: Small world: The dynamics of networks between order and randomness. Princeton Univ. Press, Princeton (1999)

    Google Scholar 

  30. Sripanidkulchai, K.: The popularity of gnutella queries and its implications on scalability (2001), http://www2.cs.cmu.edu/knunwadee/research/p2p/gnutella.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rostami, H., Habibi, J. (2005). A Mathematical Foundation for Topology Awareness of P2P Overlay Networks. In: Zhuge, H., Fox, G.C. (eds) Grid and Cooperative Computing - GCC 2005. GCC 2005. Lecture Notes in Computer Science, vol 3795. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11590354_109

Download citation

  • DOI: https://doi.org/10.1007/11590354_109

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30510-1

  • Online ISBN: 978-3-540-32277-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics