Skip to main content

Independently Checkable Proofs from Decision Procedures: Issues and Progress

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3835))

  • 722 Accesses

Abstract

In many verification applications the desired outcome is that the formula is unsatisfiable: a satisfying assignment essentially exhibits a bug and unsatisfiability implies a lack of bugs, at least for the property being verified. Most current high-performance satisfiability solvers and special-theory decision procedures are unable to provide proof of unsatisfiability. Since bugs have been discovered in many such programs long after being put into service, an uncheckable decision poses a significant problem if important economic or safety decisions are to be based upon it. This talk develops the thesis is that decision procedures can and should be designed with the ability to output an independently checkable proof. While finding a proof is hard, checking a proof can be straightforward if the proof system is simple enough. (By a “proof” we mean a real proof, with no steps omitted.) In practice, most underlying theories can produce a resolution proof. We argue that outputting such a proof does not place an undue burden on the decision procedures. We report on practical progress in this area for satisfiability solvers. Experiments have been carried out with what might be the first implementations of solver and proof checker that were developed completely independently, having only the specifications of the proof-file format as common knowledge. There is a trend toward combining high-performance satisfiability solvers with other theorem-proving methods. As the total systems become more complex, the need for “independent audits” becomes greater. Design goals for checkable proofs are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Van Gelder, A. (2005). Independently Checkable Proofs from Decision Procedures: Issues and Progress. In: Sutcliffe, G., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2005. Lecture Notes in Computer Science(), vol 3835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11591191_1

Download citation

  • DOI: https://doi.org/10.1007/11591191_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30553-8

  • Online ISBN: 978-3-540-31650-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics