Skip to main content

Verifying and Reflecting Quantifier Elimination for Presburger Arithmetic

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3835))

Abstract

We present an implementation and verification in higher-order logic of Cooper’s quantifier elimination for Presburger arithmetic. Reflection, i.e. the direct execution in ML, yields a speed-up of a factor of 200 over an LCF-style implementation and performs as well as a decision procedure hand-coded in ML.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appel, A.W., Felty, A.P.: Dependent types ensure partial correctness of theorem provers. J. Funct. Program. 14(1), 3–19 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berghofer, S., Nipkow, T.: Proof terms for simply typed higher order logic. In: Aagaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 38–52. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Berghofer, S., Nipkow, T.: Executing higher order logic. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 24–40. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Chaieb, A., Nipkow, T.: Generic proof synthesis for presburger arithmetic. Technical report, TU München (2003), http://www4.in.tum.de/~nipkow/pubs/presburger.pdf

  5. Cooper, D.C.: Theorem proving in arithmetic without multiplication. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 7, pp. 91–100. Edinburgh University Press (1972)

    Google Scholar 

  6. Crégut, P.: Une procédure de décision réflexive pour un fragment de l’arithmétique de Presburger. In: Informal proceedings of the 15th journées francophones des langages applicatifs (2004)

    Google Scholar 

  7. Fischer, M.J., Rabin, M.O.: Super-exponential complexity of presburger arithmetic. In: SIAMAMS: Complexity of Computation: Proceedings of a Symposium in Applied Mathematics of the American Mathematical Society and the Society for Industrial and Applied Mathematics (1974)

    Google Scholar 

  8. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: Int. Conf. Functional Programming, pp. 235–246. ACM Press, New York (2002)

    Google Scholar 

  9. Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right in Coq. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 98–113. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Harrison, J.: Metatheory and reflection in theorem proving: A survey and critique. Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK (1995), http://www.cl.cam.ac.uk/users/jrh/papers/reflect.dvi.gz

  11. Harrison, J.: Theorem proving with the real numbers. PhD thesis, University of Cambridge, Computer Laboratory (1996)

    Google Scholar 

  12. John Harrison’s home page, http://www.cl.cam.ac.uk/users/jrh/atp/OCaml/cooper.ml

  13. Klapper, R., Stump, A.: Validated Proof-Producing Decision Procedures. In: Tinelli, C., Ranise, S. (eds.) 2nd Int. Workshop Pragmatics of Decision Procedures in Automated Reasoning (2004)

    Google Scholar 

  14. Nipkow, T., Paulson, L.C., Wenzel, M.T. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  15. Norrish, M.: Complete integer decision procedures as derived rules in HOL. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 71–86. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Oppen, D.C.: Elementary bounds for presburger arithmetic. In: STOC ’73: Proceedings of the fifth annual ACM symposium on Theory of computing, pp. 34–37. ACM Press, New York (1973)

    Chapter  Google Scholar 

  17. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes Rendus du I Congrès de Mathématiciens des Pays Slaves, pp. 92–101 (1929)

    Google Scholar 

  18. Pugh, W.: The Omega test: a fast and practical integer programming algorithm for dependence analysis. In: Proceedings of the 1991 ACM/IEEE conference on Supercomputing, pp. 4–13. ACM Press, New York (1991)

    Chapter  Google Scholar 

  19. Slind, K.: Derivation and use of induction schemes in higher-order logic. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 275–290. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chaieb, A., Nipkow, T. (2005). Verifying and Reflecting Quantifier Elimination for Presburger Arithmetic. In: Sutcliffe, G., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2005. Lecture Notes in Computer Science(), vol 3835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11591191_26

Download citation

  • DOI: https://doi.org/10.1007/11591191_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30553-8

  • Online ISBN: 978-3-540-31650-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics