Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK
Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler
University of Surrey, Guildford, UK
Jon M. Kleinberg
Cornell University, Ithaca, NY, USA
Friedemann Mattern
ETH Zurich, Switzerland
John C. Mitchell
Stanford University, CA, USA
Moni Naor
Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz
University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen
University of Dortmund, Germany
Madhu Sudan
Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos
New York University, NY, USA
Doug Tygar
University of California, Berkeley, CA, USA
Moshe Y. Vardi
Rice University, Houston, TX, USA
Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Edmund Burke Michael Trick (Eds.)

Practice and Theory of Automated Timetabling V

5th International Conference, PATAT 2004 Pittsburgh, PA, USA, August 18-20, 2004 Revised Selected Papers

Volume Editors

Edmund Burke
University of Nottingham
School of Computer Science \& Information Technology
Jubilee Campus, Nottingham, NG8 2BB, UK
E-mail: ekb@cs.nott.ac.uk

Michael Trick
Carnegie Mellon University
Tepper School of Business
Pittsburgh, PA 15213, USA
E-mail: trick@cmu.edu

Library of Congress Control Number: 2005936696

CR Subject Classification (1998): F.2.2, G.1.6, G.2, I.2.8
ISSN 0302-9743
ISBN-10 3-540-30705-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30705-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com
© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany
Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India Printed on acid-free paper \quad SPIN: $11593577 \quad 06 / 3142 \quad 54210$

Preface

This volume contains a selection of papers from the 5th International Conference on the Practice and Theory of Automated Timetabling (PATAT 2004) held in Pittsburgh, USA, August 18-20, 2004. Indeed, as we write this preface, in the Summer of 2005, we note that we are about one month away from the tenth anniversary of the very first PATAT conference in Edinburgh. Since those very early days, the conference series has gone from strength to strength and this volume represents the latest in a series of five rigorously refereed volumes which showcase a broad spectrum of ground-breaking timetabling research across a very wide range of timetabling problems and applications.

Timetabling is an area that unites a number of disparate fields and which cuts across a number of diverse academic disciplines. While the most obvious instances of timetabling occur in educational institutions, timetabling also appears in sports applications, transportation planning, project scheduling, and many other fields. Viewing timetabling as a unifying theme enables researchers from these various areas to learn from each other and to extend their own research and practice in new and innovative ways. This volume continues the trend of the conference series to extend the definition of timetabling beyond its educational roots. In this volume, seven of the 19 papers involve domains other than education. Of course, educational timetabling remains at the core of timetabling research, and the papers in this volume represent the full range of this area including exam timetabling, room scheduling, and class rostering.

There are a number of particularly interesting aspects to the research presented in this volume. First, the variety of techniques being used to address these problems is striking. In this book, there are papers exploring optimization, constraint programming, evolutionary algorithms, tabu search, fuzzy approaches, and many other exact and heuristic methodologies. In many ways, timetabling is an ideal testbed for algorithmic approaches. The strength of timetabling in this regard revolves around a number of characteristics. First, timetabling problems are difficult, even for small instances. It is not necessary to have 10,000 students and 1,000 courses to lead to hard instances: even problems one-hundredth the size can be difficult. But it is exactly problems of that size that are of practical interest. Problems of practical interest are neither too large to be possibly solved, nor too small to be trivial. They are "just right": challenging, but possible. Furthermore, there are a lot of data available, and much of those data are available to academics. Finally, there are a number of different problem types available, allowing for a rich field of problems to be addressed. Taken together, these characteristics make timetabling an ideal domain for research on algorithms, and this volume demonstrates this richness through the variety of novel timetabling approaches that are explored and discussed.

Second, it is important to note how grounded in practice these papers are. Most of the papers begin with a real-world problem to solve. It is this interplay
between real practice and theory that gives timetabling its richness. These papers are generally not about theoretical issues but are based on the need to create real timetables. This gives an immediacy to this work that is uncommon in much research.

The downside of this real-world aspect is a lack of standardization, leading to many papers solving only slightly different problems. The third interesting aspect of this volume is a growing interest in standardizing problem definitions and creating robust, flexible definitions of general timetabling problems. This trend is most obvious in the "General Issues" papers, but occurs in many other papers in the volume. While grounding the work in practice, there is a growing interest in generalizations.

Overall, we think this volume shows timetabling as a broad, important field with a rich set of practical models, and a robust and growing set of solution approaches. We thank the authors for their contributions, and are confident in the continuing success of the PATAT conference series.

Conference Series

The Meeting in Pittsburgh was the fifth in the PATAT series of international conferences. The first four conferences were held in Edinburgh (1995), Toronto (1997), Constance (2000), and Gent (2002). Selected papers from these four conferences appeared in the Springer Lecture Notes in Computer Science series. The full references are:

Edmund Burke and Peter Ross (Eds.): Practice and Theory of Automated Timetabling, 1st International Conference, Edinburgh, UK, August/September 1995, Selected Papers, Lecture Notes in Computer Science, Vol. 1153, Springer, 1996.

Edmund Burke and Michael Carter (Eds.): Practice and Theory of Automated Timetabling, 2nd International Conference, Toronto, Canada, September 1997, Selected Papers, Lecture Notes in Computer Science, Vol. 1408, Springer, 1998.

Edmund Burke and Wilhelm Erben (Eds.): Practice and Theory of Automated Timetabling, 3rd International Conference, Konstanz, Germany, August 2000, Selected Papers, Lecture Notes in Computer Science, Vol. 2079, Springer, 2001.

Edmund Burke and Patrick De Causmaecker (Eds.): Practice and Theory of Automated Timetabling, 4th International Conference, Gent, Belgium, August 2002, Selected Papers, Lecture Notes in Computer Science, Vol. 2740, Springer, 2003.

The sixth conference will be held in Brno, Czech Republic, August/September 2006. See http://www.asap.cs.nott.ac.uk/patat/patat-index.shtml for information on the conference series.

Acknowledgements

We are very grateful to a large number of people for the success of the Pittsburgh conference and for their efforts in helping to put together this volume. We would like to acknowledge the financial support from the Tepper School of Business, Carnegie Mellon; the Carnegie Bosch Institute, Carnegie Mellon; and the Aladdin Center, Carnegie Mellon. Their generosity helped to give the conference the special atmosphere that made it such a memorable occasion. A particular thank you also goes to Cathy Burstein, who was invaluable in handling the local organization and registration, and the program could not have occurred without her efforts.

The papers that appear in this volume were carefully and thoroughly refereed. Many thanks go to the members of the Programme Committee who spent a significant amount of time ensuring the quality of the conference program itself and, particularly, of the selected papers that appear in this volume. Their hard work plays a major role in ensuring the success and high standards that have come to characterize the conference. We are also grateful to the staff at Springer for their help and encouragement and to Jan van Leeuwen, who, as an editor of the Lecture Notes in Computer Science series, has always given us valuable support and advice since the very beginning of the conference series back in 1995.

We would like to offer a very special thank you to Piers Maddox, our copy editor. The very high formatting and typesetting standards of this volume are entirely due to him. Special thanks should also go to Emma-Jayne Dann for all her hard work in supporting the administration that underpinned the editorial process for this book.

We are, of course, also very grateful to the authors and delegates at the conference who contributed so much towards making it such an enjoyable event. Finally, we would like to thank all the people on the Steering Committee for their hard work in organizing the entire series of PATAT conferences.

We are looking forward to the next conference and to seeing you in Brno in the Summer of 2006.

5th International Conference on the Practice and Theory of Automated Timetabling Programme Committee

Edmund Burke (Co-chair):
Michael Trick (Co-chair):

Jonathan Bard
Viktor Bardadym
Cynthia Barnhart
James Bean
Patrice Boizumault
Peter Brucker
Michael Carter
Peter Cowling
Patrick De Causmaecker
Kathryn Dowsland
Andreas Drexl
Moshe Dror
Wilhelm Erben

Jacques A. Ferland
Michel Gendreau

Alain Hertz
Jeffrey Kingston
Raymond Kwan
Gilbert Laporte
Vahid Lotfi
Anuj Mehrotra
Amnon Meisels
George Nemhauser
Thiruthlall Nepal
James Newall
Ben Paechter
Gilles Pesant
Sanja Petrovic
Jean-Yves Potvin
Hana Rudova
Andrea Schaerf
Jan Schreuder

University of Nottingham, UK
Carnegie Mellon University, USA

University of Texas, USA
Noveon Inc., Belgium
MIT, USA
University of Michigan, USA
University of Caen, France
University of Osnabrueck, Germany
University of Toronto, Canada
University of Bradford, UK
KaHo St.-Lieven, Gent, Belgium
Gower Optimal Algorithms Ltd.
University of Kiel, Germany
University of Arizona, USA
FH Konstanz - University of Applied Sciences, Germany
University of Montreal, Canada
Centre de Recherche sur les Transports, Montreal, Canada
École Polytechnique de Montréal, Canada
University of Sydney, Australia
University of Leeds, UK
Universite de Montreal, Canada
University of Michigan-Flint, USA
University of Miami, USA
Ben-Gurion University, Beer-Sheva, Israel
Georgia Tech, USA
Durban Institute of Technology, South Africa
eventMap Ltd., UK
Napier University, Edinburgh, UK
École Polytechnique de Montréal, Canada
University of Nottingham, UK
Université de Montréal, Canada
Masaryk University, Czech Republic
Università di Udine, Italy
University of Twente, The Netherlands

Stephen Smith
Jonathan Thompson
Paolo Toth
Greet Vanden Berghe
Stefan Voss
Dominique de Werra
George White
Michael Wright
Jay Yellen

Carnegie Mellon University, USA
Cardiff University, UK
University of Bologna, Italy
KaHo St.-Lieven, Belgium
University of Hamburg, Germany
EPF-Lausanne, Switzerland
University of Ottawa, Canada
Lancaster University, UK
Rollins College, USA

5th International Conference on the Practice and Theory of Automated Timetabling Organizers

Michael Trick:
Cathy Burstein:

Carnegie Mellon University, USA
Carnegie Mellon University, USA

International Series of Conferences on the Practice and Theory of Automated Timetabling Steering Committee

Edmund Burke (Chair)
Ben Paechter (Treasurer)
Victor Bardadym
Patrick De Causmaecker
Wilhelm Erben

Jeffrey Kingston
Amnon Meisels
Michael Trick
Dominque de Werra
George White

University of Nottingham, UK
Napier University, UK
Noveon Inc., Belgium
KaHo St.-Lieven, Gent, Belgium
FH Konstanz, University of Applied Sciences, Germany
University of Sydney, Australia
Ben-Gurion University, Beer-Sheva, Israel
Carnegie Mellon University, USA
EPF-Lausanne, Switzerland
University of Ottawa, Canada

Table of Contents

General Issues
Learning User Preferences in Distributed Calendar Scheduling
Jean Oh, Stephen F. Smith 3
Semantic Components for Timetabling
Nele Custers, Patrick De Causmaecker, Peter Demeester, Greet Vanden Berghe 17
An Open Interactive Timetabling Tool
Sylvain Piechowiak, Jingxua Ma, René Mandiau 34
Distributed Choice Function Hyper-heuristics for Timetabling and Scheduling
Prapa Rattadilok, Andy Gaw, Raymond S.K. Kwan 51
Transport Timetabling
A Hybridised Integer Programming and Local Search Method for Robust Train Driver Schedules Planning
Ignacio Laplagne, Raymond S.K. Kwan, Ann S.K. Kwan 71
Logistics Service Network Design for Time-Critical Delivery
Cynthia Barnhart, Su Shen 86
University Course Timetabling
The University Course Timetabling Problem with a Three-Phase Approach
Philipp Kostuch 109
Minimal Perturbation Problem in Course Timetabling
Tomáš Müller, Hana Rudová, Roman Barták 126
Feature Selection in a Fuzzy Student Sectioning Algorithm
Mahmood Amintoosi, Javad Haddadnia 147
A Column Generation Scheme for Faculty Timetabling
Andrea Qualizza, Paolo Serafini 161
School Timetabling
Decomposition and Parallelization of Multi-resource Timetabling Problems
Petr Šlechta 177
Interactively Solving School Timetabling Problems Using Extensions of Constraint Programming
Hadrien Cambazard, Fabien Demazeau, Narendra Jussien,
Philippe David 190
A Tiling Algorithm for High School Timetabling
Jeffrey H. Kingston 208
Project Scheduling
Lower Bounds for the Multi-skill Project Scheduling Problem with Hierarchical Levels of Skills
Odile Bellenguez, Emmanuel Néron 229
Examination Timetabling
A Novel Similarity Measure for Heuristic Selection in Examination Timetabling
Yong Yang, Sanja Petrovic 247
A Tabu Search Hyper-heuristic Approach to the Examination Timetabling Problem at the MARA University of Technology
Graham Kendall, Naimah Mohd Hussin 270
A Hybrid Multi-objective Evolutionary Algorithm for the Uncapacitated Exam Proximity Problem
Pascal Côté, Tony Wong, Robert Sabourin 294
Examination Timetabling with Fuzzy Constraints
Sanja Petrovic, Vijay Patel, Yong Yang 313
Fuzzy Multiple Heuristic Orderings for Examination Timetabling
Hishammuddin Asmuni, Edmund K. Burke, Jonathan M. Garibaldi, Barry McCollum 334
Author Index 355

