Skip to main content

Adapting Hausdorff Metrics to Face Detection Systems: A Scale-Normalized Hausdorff Distance Approach

  • Conference paper
Progress in Artificial Intelligence (EPIA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3808))

Included in the following conference series:

Abstract

Template matching face detection systems are used very often as a previous step in several biometric applications. These biometric applications, like face recognition or video surveillance systems, need the face detection step to be efficient and robust enough to achieve better results. One of many template matching face detection methods uses Hausdorff distance in order to search the part of the image more similar to a face. Although Hausdorff distance involves very accurate results and low error rates, overall robustness can be increased if we adapt it to our concrete application. In this paper we show how to adjust Hausdorff metrics to face detection systems, presenting a scale-normalized Hausdorff distance based face detection system. Experiments show that our approach can perform an accurate face detection even with complex background or varying light conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yang, M.H., Kriegman, D., Ahuja, N.: Detecting Faces in Images: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 24(1), 34ā€“58 (2002)

    Article  Google Scholar 

  2. Lam, K., Yan, H.: Fast Algorithm for Locating Head Boundaries. J. Electronic Imaging 3(4), 351ā€“359 (1994)

    Article  Google Scholar 

  3. Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust Face Detection Using the Hausdorff Distance. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 90ā€“95. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing Images Using the Hausdorff Distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(9), 850ā€“853 (1993)

    Article  Google Scholar 

  5. Huttenlocher, D.P., Rucklidge, W.J.: A multi-resolution technique for comparing images using the Hausdorff distance, Technical Report 1321, Cornell University, Department of Computer Science (1992)

    Google Scholar 

  6. Kirchberg, K.J., Jesorsky, O., Frischholz, R.W.: Genetic Model Optimization for Hausdorff Distance-Based Face Localization. In: Tistarelli, M., Bigun, J., Jain, A.K. (eds.) ECCV 2002. LNCS, vol. 2359, pp. 103ā€“111. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Shapiro, M.D., Blaschko, M.B.: On Hausdorff Distance Measures, Technical Report UM-CS-2004-071, Department of Computer Science, University of Massachusetts Amherst (2004)

    Google Scholar 

  8. Srisuk, S., Kurutach, W., Limpitikeat, K.: A Novel Approach for Robust, Fast and Accurate Face Detection. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems (IJUFKS) 9(6), 769ā€“779 (2001)

    MATH  Google Scholar 

  9. Manian, V., Ross, A.: A Texture-based Approach to Face Detection. In: Biometric Consortium Conference (BCC), Crystal City, VA (September 2004)

    Google Scholar 

  10. Frƶba, B., KĆ¼blbeck, C.: Robust Face Detection at Video Frame Rate Based on Edge Orientation Features. In: Fifth IEEE International Conference on Automatic Face and Gesture Recognition (FGR 2002), Washington, USA, pp. 342ā€“347 (2002)

    Google Scholar 

  11. Rosenblum, M., Yacoob, Y., Davis, L.: Human Expression Recognition from Motion using a Radial Basis Function Network Architecture. IEEE Transactions on Neural Networks 7(5), 1121ā€“1138 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suau, P. (2005). Adapting Hausdorff Metrics to Face Detection Systems: A Scale-Normalized Hausdorff Distance Approach. In: Bento, C., Cardoso, A., Dias, G. (eds) Progress in Artificial Intelligence. EPIA 2005. Lecture Notes in Computer Science(), vol 3808. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11595014_8

Download citation

  • DOI: https://doi.org/10.1007/11595014_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30737-2

  • Online ISBN: 978-3-540-31646-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics