Abstract
This paper presents a novel view independent approach on silhouette based human motion analysis for gait recognition applications. Spatio-temporal 1-D signals based on the differences between the outer of binarized silhouette of a motion object and a bounding box placed around silhouette are chosen as the basic image features called the distance vectors. The distance vectors are extracted using four view directions to silhouette. Gait cycle estimation and motion analysis are then performed by using normalized correlation on the distance vectors. Initial experiments for human identification are finally presented. Experimental results on the different test image sequences demonstrate that the proposed algorithm has an encouraging performance with relatively robust, low computational cost, and recognition rate for gait-based human identification.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Nixon, M.S., Carter, J.N.: Advances in Automatic Gait Recognition. In: Proc. of IEEE Int. Conf. on Automatic Face and Gesture Recognition (2004)
Ekinci, M., Gedikli, E.: Background Estimation Based People Detection and Tracking for Video Surveillance. In: Yazıcı, A., Şener, C. (eds.) ISCIS 2003. LNCS, vol. 2869, pp. 421–429. Springer, Heidelberg (2003)
Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette Analysis-Based Gait Recognition for Human Identification. IEEE Trans. on PAMI 25(12) (December 2003)
Fujiyoshi, H., Lipton, A.J., Kanade, T.: Real-Time Human Motion Analysis by Image Skeletonization. IEICE Trans. Inf.& SYST. E87-D(1) (2004)
Cutler, R., Davis, L.S.: Robust real-time periodic motion detection, analysis and applications. IEEE Trans. Pattern Analysis Machine Intelligence 22 (2000)
Sarkar, S., et al.: The HumanID Gait Challenge Problem: Data Sets, Performance, and Analysis. IEEE Trans. on PAMI 27(2) (February 2005)
Kale, A., et al.: Identification of Humans Using Gait. IEEE Trans. on Image Processing 13(9) (September 2004)
Liu, Y., Collins, R.T., Tsin, T.: Gait Sequence Analysis using Frieze Patterns. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 657–671. Springer, Heidelberg (2002)
Davis, J.W., Taylor, S.R.: Analysis and Recognition of Walking Movements. In: Proc. of int. Conference on Pattern Recognition, ICPR 2005 (2005)
BenAbdelkader, C., Cutler, R., Davis, L.: Stride and Cadence as a Biometric in Automatic Person Identification and Verification. In: Proc. of Aut. Face Gest. Rec. (2002)
Collins, R., Gross, R., Shi, J.: Silhouette-Based Human Identification from Body Shape and Gait. In: Proc. Int. Conf. Automatic Face and Gesture Recognition (2002)
Javed, O., Ali, S., Shah, M.: Online Detection and Classification of Moving Objects Using Progressively Improving Detectors. IEEE, Proc. of Int. CVPR 2005 (2005)
Phillips, J., et al.: The FERET Evaluation Methodology for Face recognition Algorithm. IEEE Trans. Pattern Analysis and Machine Intel. 22(10) (October 2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ekinci, M., Gedikli, E. (2005). A Novel Approach on Silhouette Based Human Motion Analysis for Gait Recognition. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds) Advances in Visual Computing. ISVC 2005. Lecture Notes in Computer Science, vol 3804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11595755_27
Download citation
DOI: https://doi.org/10.1007/11595755_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30750-1
Online ISBN: 978-3-540-32284-9
eBook Packages: Computer ScienceComputer Science (R0)