Abstract
This paper identifies the total number of gaps of object pixels in a binary picture, which solves an open problem in 2D digital geometry (or combinatorial topology of binary pictures). We obtain a formula for the total number of gaps as a function of the number of object pixels (grid squares), vertices (corners of grid squares), holes, connected components, and 2 × 2 squares of pixels. It can be used to test a binary picture (or just one region: e.g., a digital curve) for gap-freeness.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brimkov, V.E., Andres, E., Barneva, R.P.: Object discretizations in higher dimensions. Pattern Recognition Letters 23, 623–636 (2002)
Brimkov, V.E., Barneva, R.P., Nehlig, P.: Minimally thin discrete triangulations. In: Kaufman, A., Yagel, R., Chen, M. (eds.) Volume Graphics, ch. 3, pp. 51–70. Springer, Heidelberg (2000)
Brimkov, V.E., Klette, R.: Curves, hypersurfaces, and good pairs of adjacency relations. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 276–290. Springer, Heidelberg (2004)
Chen, L.: Discrete Surfaces and Manifolds. Scientific & Practical Computing (2004)
Cohen-Or, D., Kaufman, A.: 3D line voxelization and connectivity control. IEEE Computer Graphics and Applications 17(6), 80–87 (1997)
Kaufman, A., Cohen, D., Yagel, R.: Volume graphics. IEEE Computer 26(7), 51–64 (1993)
Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)
Kong, T.Y.: Digital topology. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33–71. Kluwer, Boston (2001)
Menger, K.: Kurventheorie, Teubner, Leipzig, Germany (1932)
Mylopoulos, J.P., Pavlidis, T.: On the topological properties of quantized spaces. I. The notion of dimension. J. ACM 18, 239–246 (1971)
Pavlidis, T.: Algorithms for Graphics and Image Processing. Computer Science Press, Rockville (1982)
Rosenfeld, A.: Arcs and curves in digital pictures. Journal of the ACM 18, 81–87 (1973)
Rosenfeld, A.: Adjacency in digital pictures. Information and Control 26, 24–33 (1974)
Urysohn, P.: Über die allgemeinen Cantorischen Kurven, Annual meeting, Deutsche Mathematiker Vereinigung, Marbourg, Germany (1923)
Voss, K.: Discrete Images, Objects, and Functions in Z n. Springer, Heidelberg (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brimkov, V.E., Maimone, A., Nordo, G., Barneva, R.P., Klette, R. (2005). The Number of Gaps in Binary Pictures. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds) Advances in Visual Computing. ISVC 2005. Lecture Notes in Computer Science, vol 3804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11595755_5
Download citation
DOI: https://doi.org/10.1007/11595755_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30750-1
Online ISBN: 978-3-540-32284-9
eBook Packages: Computer ScienceComputer Science (R0)