Abstract
Let A be an Abelian variety over a finite field \(\mathbb{F}\). The possibility of using the group \(A(\mathbb{F})\) of points on A in \(\mathbb{F}\) as the basis of a public-key cryptography scheme is still at an early stage of exploration. In this article, we will discuss some of the issues and their current staus. In particular, we will discuss arithmetic on Abelian varieties, methods for point counting, and attacks on the Discrete Logarithm Problem, especially those that are peculiar to higher-dimensional varieties.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Miri, S.A., Murty, V.K.: An application of sieve methods to elliptic curves. In: Pandu Rangan, C., Ding, C. (eds.) INDOCRYPT 2001. LNCS, vol. 2247, pp. 91–98. Springer, Heidelberg (2001)
Arita, S., Miura, S., Sekiguchi, T.: An addition algorithm on the Jacobian varieties of curves. J. Ramanujan Math. Soc. 19, 235–251 (2004)
Blake, I., Kumar Murty, V., Xu, G.: Refinements of Miller’s algorithm for computing the Weil/Tate pairing. J. Algorithms (to appear)
Cantor, D.: Computing in the Jacobian of a hyperelliptic curve. Math. Comp. 48, 95–101 (1987)
Chao, J., Matsuo, K., Tsujii, S.: Baby step giant step algorithms in point counting of hyperelliptic curves. IEICE Trans. Fundamentals E86-A(4) (2003)
Cojocaru, A.: Bounded number of prime factors for the orders of the reductions of a CM elliptic curve, Preprint (2004)
Denef, J., Vercauteren, F.: An extension of Kedlaya’s algorithm to Artin-Schreier curves in characteristic 2. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 308–323. Springer, Heidelberg (2002)
Fouquet, M., Gaudry, P., Harley, R.: An extension of Satoh’s algorithm and its implementation. J. Ramanujan Math. Soc. 15, 281–318 (2000)
Frey, G., Rück, H.: A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves. Math. Comp. 62, 865–874 (1994)
Gaudry, P., Harley, R.: Counting points on hyperelliptic curves over finite fields. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 297–312. Springer, Heidelberg (2000)
Guyot, C., Kaveh, K., Patankar, V.: Explicit algorithm for the arithmetic on the hyperelliptic Jacobians of genus 3. J. Ramanujan Math. Soc. 19, 75–115 (2004)
Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, New York (2004)
Izadi, F., Kumar Murty, V.: Counting points on an Abelian variety over a finite field. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 323–333. Springer, Heidelberg (2003)
Kedlaya, K.: Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology. J. Ramanujan Math. Soc. 16, 323–338 (2001) See also: Errata 18, 417–418 (2003)
Menezes, A., Okamoto, T., Vanstone, S.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Trans. Inform. Theory 39(5), 1639–1646 (1993)
Miller, V.: The Weil pairing and its efficient calculation. J. Cryptology 17, 235–261 (2004)
Murty, V.K.: Splitting of Abelian varieties: a new local-global problem. In: Tandon, R. (ed.) Algebra and Number Theory. Hindustan Book Agency, Delhi (2005)
Mumford, D.: Abelian Varieties, Oxford
Patankar, V.: Splitting of Abelian varieties, Ph.D Thesis, University of Toronto (2005)
Satoh, T.: The canonical lift of an ordinary elliptic curve over a finite field and its point counting. J. Ramanujan Math. Soc. 15, 247–270 (2000)
Steuding, J., Weng, A.: On the number of prime divisors of the order of elliptic curves modulo p. Acta Arith. 117, 341–352 (2005)
Thériault, N.: Index calculus attack for hyperelliptic curves of small genus. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 75–92. Springer, Heidelberg (2003)
Zarhin, Y.: Abelian varieties of K3-type and ℓ-adic representations. In: Algebraic Geometry and Analytic Geometry, pp. 231–255. Springer, Tokyo (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Murty, V.K. (2005). Abelian Varieties and Cryptography. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds) Progress in Cryptology - INDOCRYPT 2005. INDOCRYPT 2005. Lecture Notes in Computer Science, vol 3797. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596219_1
Download citation
DOI: https://doi.org/10.1007/11596219_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30805-8
Online ISBN: 978-3-540-32278-8
eBook Packages: Computer ScienceComputer Science (R0)