Skip to main content

Cryptanalysis of the Quadratic Generator

  • Conference paper
Progress in Cryptology - INDOCRYPT 2005 (INDOCRYPT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3797))

Included in the following conference series:

Abstract

Let p be a prime and let a and c be integers modulo p. The quadratic congruential generator (QCG) is a sequence (v n ) of pseudorandom numbers defined by the relation \(v_{n+1}\equiv av^{2}_{n}+c mod p\). We show that if sufficiently many of the most significant bits of several consecutive values v n of the QCG are given, one can recover in polynomial time the initial value v 0 (even in the case where the coefficient c is unknown), provided that the initial value v 0 does not lie in a certain small subset of exceptional values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proc. 33rd ACM Symp. on Theory of Comput (STOC 2001). Association for Computing Machinery, pp. 601–610 (2001)

    Google Scholar 

  2. Blackburn, S.R., Gomez-Perez, D., Gutierrez, J., Shparlinski, I.E.: Predicting the inversive generator. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 264–275. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Blackburn, S.R., Gomez-Perez, D., Gutierrez, J., Shparlinski, I.E.: Predicting nonlinear pseudorandom number generators. Math. Computation 74, 1471–1494 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brickell, E.F., Odlyzko, A.M.: Cryptanalysis: A survey of recent results. In: Contemp. Cryptology, pp. 501–540. IEEE Press, NY (1992)

    Google Scholar 

  5. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer, Berlin (1993)

    MATH  Google Scholar 

  6. Joux, A., Stern, J.: Lattice reduction: A toolbox for the cryptanalyst. J. Cryptology 11, 161–185 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kannan, R.: Algorithmic geometry of numbers. Annual Review of Comp. Sci. 2, 231–267 (1987)

    Article  MathSciNet  Google Scholar 

  8. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12, 415–440 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lagarias, J.C.: Pseudorandom number generators in cryptography and number theory. In: Proc. Symp. in Appl. Math., Amer. Math. Soc., Providence, RI, vol. 42, pp. 115–143 (1990)

    Google Scholar 

  10. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 515–534 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Micciancio, D., Goldwasser, S.: Complexity of lattice problems. Kluwer Acad. Publ., Dordrecht (2002)

    MATH  Google Scholar 

  12. Nguyen, P.Q., Stern, J.: Lattice reduction in cryptology: An update. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 85–112. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Niederreiter, H.: New developments in uniform pseudorandom number and vector generation. In: Niederreiter, H., Shiue, P.J. (eds.) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Lect. Notes in Statistics, vol. 106, pp. 87–120. Springer, Berlin (1995)

    Google Scholar 

  15. Niederreiter, H.: Design and analysis of nonlinear pseudorandom number generators. In: Schueller, G.I., Spanos, P.D. (eds.) Monte Carlo Simulation, pp. 3–9. A.A. Balkema Publishers, Rotterdam (2001)

    Google Scholar 

  16. Niederreiter, H., Shparlinski, I.E.: Recent advances in the theory of nonlinear pseudorandom number generators. In: Fang, K.-T., Hickernell, F.J., Niederreiter, H. (eds.) Proc. Conf. on Monte Carlo and Quasi-Monte Carlo Methods, pp. 86–102. Springer, Berlin (2002)

    Google Scholar 

  17. Niederreiter, H., Shparlinski, I.E.: Dynamical systems generated by rational functions. In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643, pp. 6–17. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gomez, D., Gutierrez, J., Ibeas, A. (2005). Cryptanalysis of the Quadratic Generator. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds) Progress in Cryptology - INDOCRYPT 2005. INDOCRYPT 2005. Lecture Notes in Computer Science, vol 3797. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596219_10

Download citation

  • DOI: https://doi.org/10.1007/11596219_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30805-8

  • Online ISBN: 978-3-540-32278-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics