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Abstract. This article presents some new results concerning two algebraic
attacks against the F-FCSR constructions proposed in [2]. We focus on the
parameters of the stream ciphers proposed that permit to mount algebraic
attacks when using the IV mode. The complexity obtained for the first attack
described here is 245 binary instructions using 215 known IV values for the
construction F-FCSR-SF1. All the proposed attacks are full key recovery at-
tacks. We do not contest that the FCSRs are a good and new idea, we just
say that the chosen parameters do not ensure the security level claimed.
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Introduction

In [8] and [7], a new class of attacks called “algebraic attacks” was introduced.
Those cryptanalyses use the fact that the relation between the initial state
constructed in the general case from the key and the internal state at time t is
linear. Then an attacker could construct a huge system of equations from the
observed output words using the previous remark and he does not have any
more but to solve the obtained system.

So finding non linear transition functions for stream ciphers becomes ur-
gent. Some propositions called T-functions were made by A. Klimov and A.
Shamir in [12–14]. An other possible choice proposed in [2] and in [3] is to
use an FCSR: a binary automaton with carries. All the results concerning the
complexity, the provided period comes from the 2-adic theory. In [2], the au-
thors proposed four constructions (F-FCSR-SF1, F-FCSR-SF8 F-FCSR-DF1
and F-FCSR-DF8) based on a same simple construction called F-FCSR. Two
others constructions called F-FCSR-8 and F-FCSR-H based on the same prin-
ciples were proposed in the call for stream cipher primitives of the European
Network of Excellence ECRYPT (see [3] and [17]).

In this paper, we propose two algebraic attacks with known IV values
against the F-FCSRs based upon a bad choice of the parameters when using
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the IV mode for the constructions proposed in [2] (not for the one described in
[3]): even if the transition function is not linear, the degree between the key bits
and the first output bit is very low. The first attack proposed is a traditional
one but the second one uses some particular properties of the structure of the
FCSRs. In fact, we could, if we made an exhaustive search on some particular
key bits, control and lower the degree between the key bits and the first output
bit. These two attacks are full key recovery attacks.

We want to point out one more time that those attacks do not threaten the
FCSRs themselves but just shows that the parameters of [2] were not carefully
chosen. We do not contest the security level provided by the FCSR (especially
against the algebraic attacks), we only claim that the security margin induced
by the total construction proposed in [2] is not sufficient. Notice also that
two attacks with chosen IVs against the constructions proposed in [2] will
be presented at SAC’05 by E. Jaulmes and F. Muller (see [10]). They have
also studied the version presented in [3] and published their analyses on the
ECRYPT web-site (see [9]).

This paper is organized as follows: after a short recall about the FCSRs
themselves and about the constructions proposed in [2] and in [3], Section 2
describes the particular properties used to mount the proposed attacks whereas
Section 3 describes the two proposed algebraic attacks.

1 Background on the F-FCSRs

The Feedback with Carry Shift Registers were introduced first by Klapper and
Goresky in [11]. In [2], T. Berger and F. Arnault proposed to use them as the
transition function of a filtered stream cipher. We first recall how an FCSR
automaton works. For more details on the F-FCSRs, the reader could refer to
[1, 2].

1.1 The FCSR automaton

Let q be a negative integer such as |q| is prime and p be a number such as 0 ≤
p < |q|. Then you could write p as p =

∑n−1

i=0
pi2

i and d = 1−q
2

=
∑n−1

i=0
di2

i.
The FCSR automaton with feedback prime q and an initial value p produces
the 2-adic expansion of p/q that could be seen as an infinite sequence of bits
ai such as (see [15]):

p = q ·
∞∑

i=0

ai2
i

Let us consider the sequence of integers p(t) defined by: p(0) = p, p(t+1) =
(p(t)− qai)/2. It is easy to verify that 0 ≤ p(t) < −q and p(t)/q =

∑
∞

j=t aj2
j .

The sequences (ai) and (p(t)) could be generated from an FCSR automa-
ton defined using two registers (sets of cells): a main register M and a carry
register C.
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The main register M contains n binary cells, each bit is denoted by mi(t)
(0 ≤ i ≤ n − 1). We call the integer m(t) =

∑n−1

i=0
mi(t)2

i the content of M .
The carry register contains ℓ cells where ℓ + 1 is the number of nonzero di

digits, i.e. the Hamming weight of d. More precisely, the carry register contains
one cell for each nonzero di with 0 ≤ i ≤ n − 2. We denote ci(t) the binary
digit contained in this cell. We put ci(t) = 0 when di = 0 or when i = n − 1.
We call the integer c(t) =

∑n−2

i=0
ci(t)2

i the content of C. The Hamming weight
of the binary expansion of c(t) is at most ℓ. Note that, if di = 0, then ci(t) = 0
for all t. We denote by cj1(t), . . . , cjℓ

(t) the active carries cells, i.e. the ℓ cells

corresponding with di = 1. We have c(t) =
∑ℓ

i=1
cji

(t)2ji .
A simple example with q = −347, d = 174 = 0xAE, k = 8 and ℓ = 4 is

described on the figure just bellow.

m(t) m7 m6 m5 m4 m3 m2 m1 m0- - - - - - - -- ⊞ ⊞ ⊞ ⊞

6 6 6 6

c(t) 0 0 c5 0 c3 c2 c1 0

? ? ? ?
6 6 6 6

d 1 0 1 0 1 1 1 0

The symbol ⊞ denotes the addition with carry.

The transition function of the registers could be written

m(t + 1) = (m(t))<<1 ⊕ c(t) ⊕ m0(t)d (1)

c(t + 1) = (m(t))<<1 ⊗ c(t) ⊕ c(t) ⊗ m0(t)d ⊕ m0(t)d ⊗ (m(t))<<1 (2)

where ⊕ denotes bitwise XOR, ⊗ denotes bitwise AND, and << 1 is a simple
shift to the left.

Note that m0(t) is the least significant bit of m(t) and represents the
feedback bit. The integers m(t), c(t) and d are integers of bit-size n (or less).

So if m(0) = p, at time t, the following relations are always satisfied:

p(t) = m(t) + 2c(t).

The transition function could also be described at the cell level:

mi(t + 1) = mi+1(t) ⊕ dici(t) ⊕ dim0(t) (3)

ci(t + 1) = di (mi+1(t)ci(t) ⊕ ci(t)m0(t) ⊕ m0(t)mi+1(t)) (4)

The period T of the FCSR automaton is maximal if |q| is prime and the
order of 2 modulo q is exactly |q| − 1. In that case, T is equal to |q| − 1, so
we have: 2n < T < 2n+1 − 1. The number of the possible states of the FCSR
automaton is 2n+ℓ.

In [2], the authors proposed to use the following parameters n = 128 and
ℓ = 68 before to apply on the chosen FCSR a filtering function. They choose
the prime number q equal to:

q1 = −493877400643443608888382048200783943827
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In [3], the authors proposed another primitive called F-FCSR-H and de-
signed for hardware utilization with a register length equal to n = 160 bits.
The corresponding connection integer is:

q2 = −1993524591318275015328041611344215036460140087963

that corresponds with n = 160 and ℓ = 82.

1.2 The proposed constructions

The four constructions proposed in [2] filter some of the bits of the main
register with q = q1 in the following way:

– F-FCSR-SF1: The filtering function is known and consists of a linear
function f = (f0, · · · , fn−1) on GF (2)n. If s(t) denotes the output bit at
time t, we have: s(t) =

⊕n−1

i=0
fi · mi(t).

– F-FCSR-SF8: The filtering function is also known but the aim here is to
output one byte, so the filtering function consists in 8 sub-filters F0, · · · , F7

on 16 bits linearly independent and publicly known. The output byte S(t)
is then the XOR at sixteen bits level between the eight sub-filters and the
main register M folded at byte level.

– F-FCSR-DF1: This is the same construction as SF1 but, this time, the
filter is unknown and derived from the key.

– F-FCSR-DF8: This is the same construction as SF8 but, this time, the
filter is unknown and the eight sub-filters are derived from the key.

In [3], the authors proposed a first construction called F-FCSR-8 correspond-
ing with the F-FCSR-DF8 construction. The second construction submitted
called F-FCSR-H corresponds with the case where n = 160, l = 82 with the
q value equal to q2 and F-FCSR-SF8 (the 8 sub-filters are constructed using
the d value) is applied with a key setup and an IV injection defined as follows:
M = K + 280 · IV . The carry register C is initialized to 0 and 128 iterations
are discarded at each IV change (for the details of the used filter see [3]).

In the previous proposed constructions, the initialization of the FCSR using
the key K of length lK = n is m(0) = K and c(0) = 0: p(0) = m(0)+2 ·c(0) =
K.

1.3 Description of the IV mode

An IV mode is also proposed in [2] where the IV value is directly injected in
the cells of the carry register at bit level whereas the key is injected in the
main register and in the filter if required according the F-FCSR version used.
After this initialization, the FCSR is clocked 6 times and the 6-th output bit
or byte becomes the first output bit or byte according the version we use.

This article focus on some algebraic attacks using this IV mode: the number
of clocks is not sufficient to prevent the stream-cipher from this kind of attacks:
the degree of the first output is too small.
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2 Particular algebraic properties of the FCSR automaton

We focus on this section on several algebraic properties of the FCSR that will
be used to mount the cryptanalyses presented in section 3.

2.1 Some results on the degree and the number of monomials of

algebraic equations

We consider here that at time t ≥ 0, the main register M = m(t) is composed
of mi(t) with i ∈ [0..n − 1] and the carry register C = c(t) of cji

(t) with
i ∈ [0..ℓ − 1]. These values mi(t) and cji

(t) could be seen as polynomials in
the first indeterminates (m0(0), · · · , mn−1(0), cj1(0), · · · , cjℓ

(0)). In order to
perform algebraic attacks on the FCSR, we are going to study in this section
the degree and the number of monomials occurring in these polynomials.

We denote by deg(m(t)) and deg(c(t)) the maximum of the degree of each
mi(t), resp. cji

(t) in terms of the monomials constructed from the unknowns
(m0(0), · · · , mn−1(0), cj1(0), · · · , cjℓ

(0)).

Lemma 1. The following relations on the degree are satisfied:

deg(m(t + 1)) ≤ Max(deg(m(t)), deg(c(t)))

deg(c(t + 1)) ≤ Max(deg(m(t)) + deg(c(t)), 2 · deg(m(t)))

Proof: It is a direct consequence of the equations (1) and (2). 2

Proposition 1. We have deg(m(t)) ≤ Fib(t) and deg(c(t)) ≤ Fib(t + 1),
∀t ≥ 1 where Fib(t + 1) is the (t + 1)-th term of the Fibonacci sequence such

as Fib(0) = 1 and Fib(1) = 1.

Proof: This proof could be made by induction:
At t = 0, we have deg(m(0)) = 1 = Fib(0) and deg(c(0)) = 1 = Fib(1).
Now, suppose that the relations deg(m(t)) ≤ Fib(t) and deg(c(t)) ≤ Fib(t+1)
hold for t. Using Lemma 1, we deduce

deg(m(t + 1)) ≤ Max(Fib(n), F ib(n + 1)) = Fib(n + 1)

deg(c(t + 1)) ≤ Fib(n) + Fib(n + 1) = Fib(n + 2)

2

This bound is just an upper bound that could only be reached if d0 = 1.
In the FCSRs we study, due to the fact that |q| is prime for a security aim
(see [1, 2]), d is always even and d0 = 0. So, the degree of m(t) for the FCSR
defined using q1 is under this bound.

We are also interested in the number of distinct monomials that can occur
in the m(t) and in the c(t) polynomials.
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Proposition 2. The polynomials mi(t) and ci(t) only depend on the indeter-

minates (m0(0), · · · , mt−1(0), c0(0), · · · , ct−1(0) and (mi+1(0), · · · , mi+t(0),ci(0)
,· · · , ci+t−1(0)).

Proof: This result could be obtained by induction using equations (3) and
(4). 2

The most important consequence of this result is the fact that, even if the
degree of an algebraic equation is s, this equation does not contain all the
monomials of degree less or equal to s, but only a small part of them.

It seems difficult to determine exactly the number of monomials given
by Proposition 2 but we have computed the degree of algebraic equations
and the number of distinct monomials occurring in the main register (i.e. in
the polynomials mi(t) for the value of q = q1 given in [2] and 0 ≤ t ≤ 6).
For example, if t = 6, the degree of m(t) is 10 and the maximal number of
monomials of m(6) is 274891. (Note that, due to the complexity of computing
the algebraic equations, we were not able to obtain these values for t ≥ 7.)

2.2 Algebraic equations with known carries

We have seen in Section 1.3 that in the IV mode described in [2], the initial
contents of carries are known, i.e. cj1(0), · · · , cjℓ

(0) become fixed values. From
Proposition 2, we deduce the following corollary:

Corollary 1. If the initial contents of carries cj1(0), . . . , cjℓ
(0) are known,

the polynomials mi(t) only depend (m0(0), . . . , mt−1(0), mi+1(0), . . . , mi+t(0))
for t ≥ 1. The maximal degree of m(t) satisfies the upper bound deg(m(t)) ≤
2t.

As previously, this upper bound is not reached as soon as ℓ < n. We have
computed the degree and the number of distinct monomials in m(t) for the
value of q = q1 given in [2] and 0 ≤ t ≤ 7 (see Table 1) and have compared
them with the usual upper bound given by the sum of the binomial coefficients
(
∑d

i=0
Ci

128 where d is the degree given in Table 1).

Table 1. mi(0) unknown, ci(0) known.

nb of iterations 0 1 2 3 4 5 6 7

nb of monomials 128 129 256 758 2490 8830 32836 125420

Degree in mi(0) 1 1 2 3 4 6 8 10

Binomial coefficient 129 129 8257 349633 11017633 ≈ 232
≈ 240

≈ 248

In the second attack presented here, we use a stronger property based on
the fact that the knowledge of some feedback bits limits the increase of the
degree and the number of monomials. This knowledge is equivalent to those of
m0(0), m1(0), . . . ,mt−1(0). We suppose now that not only the initial values of



Published  in Progress in Cryptology -  Indocrypt  2005  LNCS 3797

the carries are known but also the t values m0(0), m1(0), . . . ,mt−1(0) of the
main register.

Proposition 3. Suppose that cj1(0), . . . , cjℓ
(0), m0(0), . . . , mt−1(0) are known.

For 1 ≤ s ≤ t, the monomials occurring in mi(s) are those obtained from the

set of indeterminates {mi+1(0), · · · , mi+t(0)} and of degree strictly less than

s. The degree of m(s) satisfies the relation deg(m(s)) < s.
Moreover, if Is denotes the set of all possible monomials of mi(s), then the

size of Is can be computed by the following recurring relations:

#{I1} = #{I2} = n − t + 1, and #{Is+1} = 2.#{Is} − 2s−1, ∀s / 2 ≤ s < t.

Proof: The first part of the proposition is a direct consequence of the Propo-
sition 2 considering that the variables cj1(0), · · · , cjℓ

(0) and m0(0),· · · ,mt−1(0)
are known.

Using the equations (3) and (4), it is easy to verify that deg(m(1)) =
deg(m(2)) = 1, and then that the number of possible monomials is n − t + 1
(including the constant term 1).

From equations (3) and (4) and from the knowledge of cj1(0), . . . , cjℓ
(0) and

m0(j) for 0 ≤ j < t, we deduce that deg(m(s+1) = deg(c(t)) ≤ deg(m(t))+1.
It implies that deg(m(s)) ≤ s−1 for 1 < s < t. We also deduce from the same
equations that

I1 = I2 = {1, mt(0), mt+1(0), . . . , mn−1(0)}.

The monomials of Is are exactly those of the form mi1(0)mi2(0) · · ·mir(0),
with t ≤ i1 < i2 < . . . < ir < n, r < s and ir − i1 < s.

Clearly Is is a subset of Is+1. Moreover, the new monomials of Is+1 are
obtained in the following way: each monomial mi1(0)mi2(0) . . . mir(0) corre-
sponds to a new one mi1(0)mi2(0) . . . mir(0)mi1+s(0). It is possible if and only
if i1 < n− s. There are 2s−1 monomials in Id such that i1 ≥ n− s. This gives
the recurring relation #{Is+1} = 2.#{Is} − 2s−1. 2

The so obtained bound b = #{It} is a good approximation on the number
of monomials in the algebraic equations after t iterations.

Table 2 gives the results obtained with q1, t = 6, cj1(0) = . . . = cj68(0) = 1
and m0(0) = . . . = m5(0) = 1. (Notice that all the values of the second row of
this table reach the bound #{Is}.)

Table 2. mi(0) known for i := 0 to 5, ci(0) known.

nb of iterations s 0 1 2 3 4 5 6

nb of monomials in m(s) 123 123 123 244 484 960 1904

deg(m(s)) 1 1 1 2 3 4 5

3 Algebraic attacks with known IV values

The two attacks presented in this section are attacks with known IV values.
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3.1 General principle of an algebraic attack

Algebraic attacks were introduced by N. Courtois and W. Meier in [8] and
in [7] and exploit the fact that the dependence between the key bits and the
internal states at time t is linear when using an LFSR. Suppose, for example,
that the key K is directly injected in the first initial state of size n at t = 0:
Init0 = (K0, · · · , Kn−1) where (K0, · · · , Kn−1) is the representation of K at
bit level. Suppose also that the output bit (or word) s(t) could be written
at time t: s(t) = f(Lt(K0, · · · , Kn−1)) where f is a boolean function from
GF (2)m into GF (2)k and L is the linear transition function. Then, you could
built a system of equations of degree deg(f) for different t values where the
unknown variables are the key bits. It is possible to solve the obtained system
using a relinearization technique (see [5]) or a dedicated algorithm using the
Gröbner basis (see [4]).

There are many improvements of such techniques: you could find some low
degree multiples of f to lower the general degree of the built system (see [16]),
try to find a relation using several output words (see [7]) and so on.

If an FCSR is used as a transition function, the problem becomes more
difficult due to the fact that this transition function is no more linear. However,
if the number of iterations is sufficiently small, the degree of the corresponding
system linking the output words and the key bits stays reasonable. Moreover,
all the filtering function proposed in [2] and in [3] are linear and do not increase
the degree of the system. More formally, the obtained system could be written
as: s(t) = f(T t(K0, · · · , Kn−1)) where f is a linear function from GF (2)n

into GF (2)k (k = 1 or 8 for the constructions studied here) and where T
is the FCSR transition function: the degree of the t-th equation depends on
the degree of T t. The first equation at time t = 0 is linear, the following
one is quadratic and the degree increases at each clock according the relation
demonstrated in Section 2.

3.2 A first simple attack

The principle of this attack is very simple: the first output after a change of a
known IV gives an algebraic equation which can be computed, since there are
only 6 iterations before the first output.

So, suppose that, as described in [2], the initial value of the main register is
m(0) = (m0(0), · · · , m127(0)) = (K0, · · · , K127) where each Ki, ∀i ∈ [0..127]
denotes a key-bit of the key K and that the initial value of the carry reg-
ister denoted by c(0) = (c0(0), · · · , c67(0)) is known and is equal to IV =
(IV0, · · · , IV67). In [2], the first output s(t) = s(6) (that could be a bit or
a byte) is computed after six clocks, the previous outputs being discarded.
So, we could construct the following simple algebraic attack against all the
constructions proposed in [2] when using the IV mode:
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– For a subset of N known IV values, compute the first output bit (or byte)
s(6) and generate the corresponding system with N ′ equations.

– Linearize the obtained system and use a Gaussian elimination to solve it.
– When you find a solution, test the obtained key for a known IV by gener-

ating few key-stream bits.

So, the complexity of this attack is about (N ′)3 basic binary instructions.
Let us now determinate the required number of known IV values for the four
constructions described in Section 1.2.

First, we have seen in Section 2 that the number of possible monomials
after 6 clocks, given in Table 1 is 32836 ≃ 215. So, in the case of F-FCSR-

SF1, this number corresponds exactly to the number of unknowns due to the
fact that the filter is linear and completely known. So, the complexity of the
previous attack is about 245 basic binary operations for a number of known
IV values equal to N = N ′ = 215.

For the F-FCSR-SF8 construction, the number of monomials depending
on the key bits is always the same 215 but less known IV values are required:
each output byte S(6) gives 8 equations. So, the complexity is the same than
previously but the number of known IV values required is equal to N = 212

whereas the number of equations is always the same N ′ = 215.
In the case where the F-FCSR-DF1 construction is used, the filter is

dynamic and constructed from the key. So we could consider it as 128 unknown
coefficients denoted by fi, ∀i ∈ [0..127]:

s(6) =

127⊕

i=0

fi · mi(6).

So, taking into account the fi values as unknowns, the number of monomials
is multiplied by a factor 128 and then we need about N ′ ≃ 128 · 215 = 222

equations generated from N = 222 known IV values for a complexity equal to
222·3 = 266 basic binary instructions.

In the last case (F-FCSR-DF8), where the filter is unknown and derived
from the key and where the output is one byte, you could write the output
bits in the following way:

Sj(6) =
15⊕

i=0

f8j+i · m8j+i(6)

for j = 0, · · · , 7.
So if you only consider one output bit (the first one for example), the num-

ber of unknowns added is only 16 instead of 128. So, the number of monomials
is multiplied by a factor 16 and you need 219 known IV values to generate 219

equations for a complexity equal to 23·19 = 257 basic binary instructions.
All the previous results are summed up in Table 3.



Published  in Progress in Cryptology -  Indocrypt  2005  LNCS 3797

Table 3. First attack

Algorithm Attack Complexity Data

F-FCSR-SF1 IV mode algebraic 245 215

F-FCSR-DF1 IV mode algebraic 266 222

F-FCSR-SF8 IV mode algebraic 245 212

F-FCSR-DF8 IV mode algebraic 257 219

3.3 Improving the previous attack

We have seen in Section 2.2 that we could lower the degree and so the number
of monomials of m(t) by knowing t feedback bits. So, we could improve the
previous attack by sharing it in two parts, first we perform an exhaustive
search on t = 6 feedback bits (i.e. the bits m0(0), · · · , m5(0)) by generating,
for each value, a system of equations and after by solving this simpler system.

The algorithm is then the following one:

– for each possible value of m0(0), · · · , m5(0) do
– for N known IV values, compute the first corresponding output word s(6)

(a bit or a byte).(In case you use F-FCSR-DF8, take only into account the
first output bit S0(t).)

– generate the system of N ′ equations
– solve the corresponding system by linearization
– when you find a solution, test the obtained key by generating few key-

stream bits.

We detail here the complexity of a such attack for F-FCSR-DF1 (the details
of the other cases are left to the reader). The number of monomials is 1904 ≈
210.89 (c.f. Table 2). So, taking into account the 128 unknown bits of the filter,
N = 128 · 210.89, N ′ = 128 · 210.89 and the total complexity of the previous
attack is 23·17.89 · 26 ≈ 260 operations considering a resolution with a simple
linearization.

The corresponding complexity for F-FCSR-DF8 is 251 operations, for F-
FCSR-SF1, that corresponds with 239 operations and for F-FCSR-SF8 with
239 operations.

Table 4. Second attack

Algorithm Attack Complexity Data

F-FCSR-SF1 IV mode exhaust. + alg 239 211

F-FCSR-DF1 IV mode exhaust. + alg 260 218

F-FCSR-SF8 IV mode exhaust. + alg 239 28

F-FCSR-DF8 IV mode exhaust. + alg 251 215

We have implemented the first attack described (see section 3.2) on a small
example to prove its relevance with q = −112979 and d = 56490. So, the main
register M contains 16 binary cells m(t) and the carry register c(t) 8 cells.
We consider here that the number of initial clocks is 3. We solve the obtained
system using the implementation of the Buchberger algorithm provided by
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magma 2.9. To simplify the resolution we consider here that the unknown
filtering variables are directly the key bits. Solve the obtained system takes
about fifteen minutes on a Pentium 4 and gives 328 possible solutions including
the good one: K =0xdde5.

More, when we compute the number of exact monomials for the previous
example, we obtain the following results:

Table 5. Experimental number of monomials for n = 16

nb of iterations 0 1 2 3 4 5 6 7

nb of monomials 16 17 32 86 250 766 2372 7148

Degree in mi(0) 1 1 2 3 4 6 8 10

3.4 Could we apply this attack on F-FCSR-8 and on F-FCSR-H ?

Those attacks especially the second one could not be applied on the two ver-
sions proposed for the ECRYPT call for stream cipher primitives [17] (see [3])
due to a greater number of clocks before the first output generation.

To prevent the FCSR constructions using an IV mode from the algebraic
attacks proposed in this paper, the required number of clocks t before gen-
erating an output must verify the following inequality 2n > 2t · (#{It})

2.37

where 2.37 is the coefficient of the resolution of a linear system given in [6]
and where #{It} is the cardinal of the set defined in Proposition 3. For exam-
ple, if n = 128, the minimal number of initial clocks must be at least equal to
34. If n = 160 for a key length equal to 80 bits, this lower bound is equal to
20.

The new parameters chosen for F-FCSR-8 (F-FCSR-DF8 using 64 initial
clocks instead of 6, the number of monomials given by Proposition 3 is then
close to 264) and F-FCSR-H (the construction presented in Section 1.2 with
160 initial clocks and n = 160 for a key length equal to 80 bits, then the
number of possible monomials is 280) described in the ECRYPT submission
(see [3] for more details) verifies the previous conditions and prevent the new
proposed FCSR constructions from the two attacks described in this paper
that become more expansive than the exhaustive key search.

In the estimation of the number of monomials made here, we do not take
into account the time required to compute all those algebraic equations (we
do not evaluate the corresponding complexity) but experimentally, it seems
that this complexity becomes greater than the resolution of the system itself
for more than 10 iterations.

Conclusion

We present in this paper two algebraic attacks against the F-FCSR construc-
tions proposed in [2] based on some bad choices in the stream-cipher parame-
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ters but also on some particular algebraic properties of the FCSRs described
here.

We do not contest the security level provided by the FCSR, we only claim
that the security margin induced by the total construction proposed in [2] is
not sufficient. The proposed parameters (size of the FCSR, number of clocks
before the first output,...) must be enlarged. This is what have been done in the
constructions submitted to the ECRYPT call for stream ciphers [3]. However,
some other attacks could be applied on those two new versions as noticed by
E. Jaulmes and F. Muller in [9].
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