Abstract
In this paper, we propose a new variant of the NTRU public key cryptosystem – the MaTRU cryptosystem. MaTRU works under the same general principles as the NTRU cryptosystem, except that it operates in a different ring with a different linear transformation for encryption and decryption. In particular, it operates in the ring of k by k matrices of polynomials in R = ℤ[X]/(X n− 1), whereas NTRU operates in the ring ℤ[X]/(X n− 1). Note that an instance of MaTRU has the same number of bits per message as an instance of NTRU when nk 2 = N. The improved efficiency of the linear transformation in MaTRU leads to respectable speed improvements by a factor of O(k) over NTRU at the cost of a somewhat larger public key.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Banks, W.D., Shparlinski, I.E.: A variant of NTRU with non-invertible polynomials. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 62–70. Springer, Heidelberg (2002)
Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997)
Ding, J.: A new variant of the Matsumoto-Imai cryptosystem through perturbation. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 305–318. Springer, Heidelberg (2004)
Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. On Information Theory 22, 644–654 (1976)
Gentry, C.: Key recovery and message attacks on NTRU-composite. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 182–194. Springer, Heidelberg (2001)
Han, D., Hong, J., Han, J.W., Kwon, D.: Key recovery attacks on NTRU without ciphertext validation routine. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 274–284. Springer, Heidelberg (2003)
Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSign: Digital Signatures Using the NTRU Lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003)
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A Ring-Based Public Key Cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)
Hoffstein, J., Silverman, J.H.: Optimizations for NTRU. In: Public-key Cryptography and Computational Number Theory, DeGruyter (2000) Available at [21]
Hoffstein, J., Silverman, J.H.: Random small hamming weight products with applications to cryptography. Discrete Applied Mathematics, special issue on the 2000 com2MaC workshop on cryptography 130(1), 37–49 (2003); Available at [21]
Jaulmes, E., Joux, A.: A Chosen Ciphertext Attack on NTRU. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 20–35. Springer, Heidelberg (2000)
Koblitz, N.: Elliptic curves cryptosystems. Math. of Comp. 48, 203–209 (1987)
Karu, P., Loikkanen, J.: Practical comparison of fast public-key cryptosystems. Seminar on Network Security, Telecommunications Software and Multimedia Laboratory, Kelsinki University of Technology, Available at http://www.tml.hut.fi/Opinnot/Tik-110.501/2000/papers.html
Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)
McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. JPL DSN Progress Report 42-44, pp. 114–116 (1978)
May, A., Silverman, J.H.: Dimension Reduction Methods for Convolution Modular Lattices. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 110–125. Springer, Heidelberg (2001)
Howgrave-Graham, N., Nguyen, P.Q., Pointcheval, D., Proos, J., Silverman, J.H., Singer, A., Whyte, W.: The Impact of Decryption Failures on the Security of NTRU Encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 226–246. Springer, Heidelberg (2003)
Howgrave-Graham, N., Silverman, J.H., Whyte, W.: NTRU Cryptosystems Technical Report #004, Version 2: A Meet-In-The-Middle Attack on an NTRU Private Key, http://www.ntru.com
Nguyen, P.Q., Pointcheval, D.: Analysis and Improvements of NTRU Encryption Paddings. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 210–225. Springer, Heidelberg (2002)
Nguyen, P.Q., Stern, J.: The Two Faces of Lattices in Cryptology. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 148–180. Springer, Heidelberg (2001)
NTRU Cryptosystems. Technical reports, available at http://www.ntru.com/cryptolab/tech_notes.htm
Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public key cryptosystem. Communications of the ACM 21, 120–126 (1978)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Coglianese, M., Goi, BM. (2005). MaTRU: A New NTRU-Based Cryptosystem. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds) Progress in Cryptology - INDOCRYPT 2005. INDOCRYPT 2005. Lecture Notes in Computer Science, vol 3797. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596219_19
Download citation
DOI: https://doi.org/10.1007/11596219_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30805-8
Online ISBN: 978-3-540-32278-8
eBook Packages: Computer ScienceComputer Science (R0)