Skip to main content

Short Threshold Signature Schemes Without Random Oracles

  • Conference paper
Progress in Cryptology - INDOCRYPT 2005 (INDOCRYPT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3797))

Included in the following conference series:

Abstract

Recently, Boneh and Boyen proposed a short digital signature scheme where signatures are as short as DSA signatures, but are provably secure in the absence of random oracles. We propose threshold signature schemes based on their short signature scheme. Signatures of our schemes are the same as the underlying short signature scheme. We also prove security of our schemes under q-SDH assumption without using random oracles. To the best of our knowledge, this is the first threshold construction for the short signature scheme without random oracles.

This work was supported by the National Natural Science Foundation of China (60403005), and partially (60373040).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abe, M.: Robust distributed multiplication without interaction. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 130–147. Springer, Heidelberg (1999)

    Google Scholar 

  2. Abe, M., Cramer, R., Fehr, S.: Non-interactive distributed-verifier proofs and proving relations among commitments. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 206–223. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Abe, M., Fehr, S.: Adaptively secure Feldman VSS and applications to universally-composable threshold cryptography. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 317–334. Springer, Heidelberg (2004)

    Google Scholar 

  4. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in a constant number of rounds of interaction. In: Proc. of the 8th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 201–209 (1989)

    Google Scholar 

  5. Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. of AFIPS 1979, pp. 313–317 (1979)

    Google Scholar 

  6. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Google Scholar 

  8. Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive security for threshold cryptosystems. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 98–115. Springer, Heidelberg (1999)

    Google Scholar 

  9. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC), pp. 209–218 (1998)

    Google Scholar 

  10. Choi, S.G.: Traceable signatures based on bilinear pairings (2004), Available at http://theory.snu.ac.kr/~sgchoi/sts.pdf

  11. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. ACM TISSEC 3(3), 161–185 (2000)

    Article  Google Scholar 

  12. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signatures. Information and Computation 164(1), 54–84 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. SIAM J. Computing 18(1), 186–208 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Computing 17(2), 281–308 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pedersen, T.: A threshold cryptosystem without a trusted party. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  18. Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)

    Google Scholar 

  19. Peikert, C.: On error correction in the exponent (2005), Available at http://eprint.iacr.org/2005/105/

  20. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  21. Welch, L.R., Berlekamp, E.R.: Error correction of algebraic block codes. U. S. Patent 4 633 470 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, H., Zhang, Y., Feng, D. (2005). Short Threshold Signature Schemes Without Random Oracles. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds) Progress in Cryptology - INDOCRYPT 2005. INDOCRYPT 2005. Lecture Notes in Computer Science, vol 3797. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596219_24

Download citation

  • DOI: https://doi.org/10.1007/11596219_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30805-8

  • Online ISBN: 978-3-540-32278-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics