Abstract
The curves recommended by NIST are defined over finite fields GF(2m) with m = 163, 233, 283, 409, 571. Among them GF(2163) and GF(2409) have type-IV Gaussian normal bases. Using the Reyhani-Masoleh and Hasan’s serial multiplier for type-I optimal normal basis, in this paper, we propose a new serial multiplier for GF(2m) with type-IV Gaussian normal basis, which reduces the critical XOR path delay of the best known Reyhani-Masoleh and Hasan’s serial multiplier by 25 % and the number of XOR gates of Kwon et al.’s multiplier by 2. Therefore our proposed multiplier can be applicable to implementing the protocols related to the area including ECC under in ubiquitous computing.
This research was supported by the MIC(Ministry of Information and Communication), Korea, under the ITRC(Information Technology Research Center) support program supervised by the IITA(Institute of Information Technology Assessment).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agnew, G.B., Mullin, R.C., Onyszchuk, I., Vanstone, S.A.: An implementation for a fast public key cryptosystem. J. Cryptography 3, 63–79 (1991)
ANSI X 9.63, Public key cryptography for the financial sevices industry: Elliptic curve key agreement and transport protocols, draft (1998)
Gao Jr., S., Lenstra, H.W.: Optimal normal bases. Designs, Codes and Cryptography 2, 315–323 (1992)
Hasan, M.A., Wang, M.Z., Bhargava, V.K.: A modified Massey-Omura parallel multiplier for a class of finite fields. IEEE Trans. 42(10), 1278–1280 (1993)
IEEE P1363, Standard specifications for public key cryptography, Draft 13 (1999)
Itoh, T., Tsujii, S.: Structure of parallel multipliers for a class of fields. Information and Computation 83, 21–40 (1989)
Kim, C.H., Oh, S., Lim, J.: A new hardware architecture for operations in GF(2n ). IEEE Trans. 51(1), 90–92 (2002)
Koc, C.K., Sunar, B.: Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields. IEEE Trans. 47(3), 353–356 (1998)
Kwon, S., Gaj, K., Kim, C.H., Hong, C.P.: Efficient Linear Array for Multiplication in GF(2m) Using a Normal Basis for Elliptic Curve Cryptography. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 76–91. Springer, Heidelberg (2004)
Lidl, R., Niederreiter, H.: Introduction to finite fields and its applications. Cambridge Univ. Press, Cambridge (1994)
Massey, J.L., Omura, J.K.: Computational method and apparatus for finite field arithmetic. US Patent NO. 4587627 (1986)
Menezes, A.J., Blake, I.F., Gao, X., Mullin, R.C., Vanstone, S.A., Yaghoobian, T.: Applications of finite fields. Kluwer Academic, Dordrecht (1993)
Reyhani-Masoleh, A., Hasan, M.H.: Low complexity sequential normal basis multipliers over GF(2m). In: 16th IEEE Symposium on Computer Arithmetic, vol. 16, pp. 188–195 (2003)
Reyhani-Masoleh, A., Hasan, M.H.: Efficient Digit-Serial Normal Basis Multipliers over Binary Extension Fields. ACM Trans. on Embedded m(m + 1)/2 ed Computing Systems(TECS), Special Issue on Embedded Systems and Security 3(3), 575–592 (2004)
Reyhani-Masoleh, A., Hasan, M.H.: A new construction of Massey-Omura parallel multiplier over GF(2m ). IEEE Trans. 51(5), 512–520 (2002)
Reyhani-Masoleh, A., Hasan, M.H.: Efficient multiplication beyond optimal normal bases. IEEE Trans. 52(4), 428–439 (2003)
Reyhani-Masoleh, A., Hasan, M.H.: Low Complexity Word-Level Sequential Normal Basis Multipliers. IEEE Trans. 54(2), 98–110 (2005)
Wang, C.C., Truong, T.K., Shao, H.M., Deutsch, L.J., Omura, J.K., Reed, I.S.: VLSI architectures for computing multiplications and inverses in GF(2n)
Wu, H., Hasan, M.A.: Low Complexity bit-parallel multipliers for a class of finite fields. IEEE Trans. 47(8), 883–887 (1998)
Yang, D.J., Kim, C.H., Park, Y., Kim, Y., Lim, J.: Modified sequential Normal Basis Multipliers for Type II Optimal Normal Basis. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 647–656. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, C.H., Kim, Y., Chang, N.S., Park, I. (2005). Modified Serial Multipliers for Type-IV Gaussian Normal Bases. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds) Progress in Cryptology - INDOCRYPT 2005. INDOCRYPT 2005. Lecture Notes in Computer Science, vol 3797. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596219_30
Download citation
DOI: https://doi.org/10.1007/11596219_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30805-8
Online ISBN: 978-3-540-32278-8
eBook Packages: Computer ScienceComputer Science (R0)