Skip to main content

Modified Serial Multipliers for Type-IV Gaussian Normal Bases

  • Conference paper
Progress in Cryptology - INDOCRYPT 2005 (INDOCRYPT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3797))

Included in the following conference series:

Abstract

The curves recommended by NIST are defined over finite fields GF(2m) with m = 163, 233, 283, 409, 571. Among them GF(2163) and GF(2409) have type-IV Gaussian normal bases. Using the Reyhani-Masoleh and Hasan’s serial multiplier for type-I optimal normal basis, in this paper, we propose a new serial multiplier for GF(2m) with type-IV Gaussian normal basis, which reduces the critical XOR path delay of the best known Reyhani-Masoleh and Hasan’s serial multiplier by 25 % and the number of XOR gates of Kwon et al.’s multiplier by 2. Therefore our proposed multiplier can be applicable to implementing the protocols related to the area including ECC under in ubiquitous computing.

This research was supported by the MIC(Ministry of Information and Communication), Korea, under the ITRC(Information Technology Research Center) support program supervised by the IITA(Institute of Information Technology Assessment).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agnew, G.B., Mullin, R.C., Onyszchuk, I., Vanstone, S.A.: An implementation for a fast public key cryptosystem. J. Cryptography 3, 63–79 (1991)

    MATH  MathSciNet  Google Scholar 

  2. ANSI X 9.63, Public key cryptography for the financial sevices industry: Elliptic curve key agreement and transport protocols, draft (1998)

    Google Scholar 

  3. Gao Jr., S., Lenstra, H.W.: Optimal normal bases. Designs, Codes and Cryptography 2, 315–323 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hasan, M.A., Wang, M.Z., Bhargava, V.K.: A modified Massey-Omura parallel multiplier for a class of finite fields. IEEE Trans. 42(10), 1278–1280 (1993)

    Article  Google Scholar 

  5. IEEE P1363, Standard specifications for public key cryptography, Draft 13 (1999)

    Google Scholar 

  6. Itoh, T., Tsujii, S.: Structure of parallel multipliers for a class of fields. Information and Computation 83, 21–40 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kim, C.H., Oh, S., Lim, J.: A new hardware architecture for operations in GF(2n ). IEEE Trans. 51(1), 90–92 (2002)

    Article  MathSciNet  Google Scholar 

  8. Koc, C.K., Sunar, B.: Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields. IEEE Trans. 47(3), 353–356 (1998)

    Article  MathSciNet  Google Scholar 

  9. Kwon, S., Gaj, K., Kim, C.H., Hong, C.P.: Efficient Linear Array for Multiplication in GF(2m) Using a Normal Basis for Elliptic Curve Cryptography. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 76–91. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Lidl, R., Niederreiter, H.: Introduction to finite fields and its applications. Cambridge Univ. Press, Cambridge (1994)

    Google Scholar 

  11. Massey, J.L., Omura, J.K.: Computational method and apparatus for finite field arithmetic. US Patent NO. 4587627 (1986)

    Google Scholar 

  12. Menezes, A.J., Blake, I.F., Gao, X., Mullin, R.C., Vanstone, S.A., Yaghoobian, T.: Applications of finite fields. Kluwer Academic, Dordrecht (1993)

    MATH  Google Scholar 

  13. Reyhani-Masoleh, A., Hasan, M.H.: Low complexity sequential normal basis multipliers over GF(2m). In: 16th IEEE Symposium on Computer Arithmetic, vol. 16, pp. 188–195 (2003)

    Google Scholar 

  14. Reyhani-Masoleh, A., Hasan, M.H.: Efficient Digit-Serial Normal Basis Multipliers over Binary Extension Fields. ACM Trans. on Embedded m(m + 1)/2 ed Computing Systems(TECS), Special Issue on Embedded Systems and Security 3(3), 575–592 (2004)

    Google Scholar 

  15. Reyhani-Masoleh, A., Hasan, M.H.: A new construction of Massey-Omura parallel multiplier over GF(2m ). IEEE Trans. 51(5), 512–520 (2002)

    MathSciNet  Google Scholar 

  16. Reyhani-Masoleh, A., Hasan, M.H.: Efficient multiplication beyond optimal normal bases. IEEE Trans. 52(4), 428–439 (2003)

    Article  Google Scholar 

  17. Reyhani-Masoleh, A., Hasan, M.H.: Low Complexity Word-Level Sequential Normal Basis Multipliers. IEEE Trans. 54(2), 98–110 (2005)

    Article  Google Scholar 

  18. Wang, C.C., Truong, T.K., Shao, H.M., Deutsch, L.J., Omura, J.K., Reed, I.S.: VLSI architectures for computing multiplications and inverses in GF(2n)

    Google Scholar 

  19. Wu, H., Hasan, M.A.: Low Complexity bit-parallel multipliers for a class of finite fields. IEEE Trans. 47(8), 883–887 (1998)

    Article  MathSciNet  Google Scholar 

  20. Yang, D.J., Kim, C.H., Park, Y., Kim, Y., Lim, J.: Modified sequential Normal Basis Multipliers for Type II Optimal Normal Basis. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 647–656. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, C.H., Kim, Y., Chang, N.S., Park, I. (2005). Modified Serial Multipliers for Type-IV Gaussian Normal Bases. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds) Progress in Cryptology - INDOCRYPT 2005. INDOCRYPT 2005. Lecture Notes in Computer Science, vol 3797. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596219_30

Download citation

  • DOI: https://doi.org/10.1007/11596219_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30805-8

  • Online ISBN: 978-3-540-32278-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics