Abstract
At ASIACRYPT 2004, Hong et al. introduced the notion of UOWHFs of order r > 0. A UOWHF has the order r if it is infeasible for any adversary to win the game for UOWHF where the adversary is allowed r adaptive queries to the hash function oracle before outputting his target message. They showed that if a UOWHF has the order r, its some-round MD (Merkle-Damgård) or some-level TR (TRee) extension is a UOWHF. Since MD and TR extensions do not require additional key values except the key of compression functions for hashing, their result means that the order of UOWHFs can be useful for minimizing the total key length. In this paper we study how to construct such UOWHFs of order r. As the first step, we observe Bellare-Rogaway UOWHF and Naor-Yung UOWHF. It is shown that Bellare-Rogaway UOWHF has the order 0 and that Naor-Yung UOWHF has the order 1. We generalize the construction of Naor-Yung UOWHF based on a one-way permutation to that of the UOWHF of order r.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bellare, M., Rogaway, P.: Collision-resistant hashing: Towards making UOWHFs practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484. Springer, Heidelberg (1997)
Chen, R., Biham, E.: Near Collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)
Hong, D., Preneel, B., Lee, S.: Higher Order Universal One-Way Hash Functions. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 201–213. Springer, Heidelberg (2004)
Lee, W., Chang, D., Lee, S., Sung, S., Nandi, M.: New Parallel Domain Extenders for UOWHF. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 208–227. Springer, Heidelberg (2003)
Mironov, I.: Hash Functions: From Merkle-Damgård to Shoup. In: Pfitzmann, B., Goos, G., Hartmanis, J., van Leeuwen, J. (eds.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 166–181. Springer, Heidelberg (2001)
Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: Proceedings of the 21st Annual Symposium on Theory of Computing, pp. 33–43. ACM, New York (1989)
Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 371–388. Springer, Heidelberg (2004)
Sarkar, P.: Constuction of UOWHF: Tree Hashing Revisited. Cryptology ePrint Achive, http://eprint.iacr.org/2002/058
Sarkar, P.: Domain Extenders for UOWHF: A Generic Lower Bound om Key Expansion and a Finite Binary Tree Algorithm. Cryptology ePrint Archive, http://eprint.iacr.org/2003/009
Sarkar, P.: Masking Based Domain Extenders for UOWHFs: Bounds and Constructions. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 187–200. Springer, Heidelberg (2004)
Shoup, V.: A composite theorem for universal one-way hash functions. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer, Heidelberg (2000)
Simon, D.: Finding collisions on a one-way street: can secure hash functions be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)
Zheng, Y., Matsumoto, T., Imai, H.: Connections among several versions of one-way hash functions. Trans. IEICE E E73(7), 1092–1099 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hong, D., Sung, J., Hong, S., Lee, S. (2005). How to Construct Universal One-Way Hash Functions of Order r . In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds) Progress in Cryptology - INDOCRYPT 2005. INDOCRYPT 2005. Lecture Notes in Computer Science, vol 3797. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596219_6
Download citation
DOI: https://doi.org/10.1007/11596219_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30805-8
Online ISBN: 978-3-540-32278-8
eBook Packages: Computer ScienceComputer Science (R0)