Abstract
In this paper we design several double length hash functions and study their security properties in the random oracle model. We design a class of double length hash functions (and compression functions) which includes some recent constructions [4,6,10] . We also propose a secure double length hash function which is as efficient as the insecure concatenated classical hash functions [7].
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bellare, M.: A Note on Negligible Function. Journal of Cryptology 15(4), 271–284 (2002)
Canetti, R., Goldreich, O., Halvei, S.: The random oracle methodology, revisited. In: 30th Annual ACM Symposium on Theory of Computing (STOC), pp. 209–218 (1998)
Damgå, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)
Finney, H.: More problems with hash functions. In: The cryptographic mailing list, 24 August (2004), Available at http://lists.virus.org/cryptography-0408/msg00124.html
Hattori, M., Hirose, S., Yoshida, S.: Analysis of Double Block Lengh Hash Functions. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 290–302. Springer, Heidelberg (2003)
Hirose, S.: Provably Secure Double-Block-Length Hash Functions in a Black-Box Model. In: 7th International Conference on Information Security and Cryptology (2004)
Joux, A.: Multicollision on Iterated Hash Functions. Applications to Cascaded Constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)
Knudsen, L., Lai, X., Preneel, B.: Attacks on fast double block length hash functions. Journal of Cryptology 11(1) (winter 1998)
Knudsen, L., Preneel, B.: Construction of Secure and Fast Hash Functions Using Nonbinary Error-Correcting Codes. IEEE transactions on information theory 48(9) (September 2002)
Lucks, S.: Design principles for Iterated Hash Functions. ePrint Archive Report (2004), Available at http://eprint.iacr.org/2004/253
Merkle, R.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)
Meyer, C.H., Schilling, M.: Secure program load with manipulation detection code. In: Proceedings Securicom, pp. 111–130 (1988)
Nandi, M., Lee, W., Sakurai, K., Lee, S.: Security Analysis of a 2/3-rate Double Length Compression Function in The Black-Box Model. Fast Software Encryption (2005)
Nandi, M., Stinson, D.R.: Multicollision Attacks on Generalized Hash Functions. Cryptology ePrint Archive (2004), Available at http://eprint.iacr.org/2004/330
Stinson, D.R.: Cryptography: Theory and Practice, 2nd edn. CRC Press, Inc, Boca Raton
Stinson, D.R.: Some observations on the theory of cryptographic hash functions. ePrint Archive Report (2001), Available at http://eprint.iacr.org/2001/020/
Satoh, T., Haga, M., Kurosawa, K.: Towards Secure and Fast Hash Functions. IEICE Trans. E86-A(1) (January 1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nandi, M. (2005). Towards Optimal Double-Length Hash Functions. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds) Progress in Cryptology - INDOCRYPT 2005. INDOCRYPT 2005. Lecture Notes in Computer Science, vol 3797. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596219_7
Download citation
DOI: https://doi.org/10.1007/11596219_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30805-8
Online ISBN: 978-3-540-32278-8
eBook Packages: Computer ScienceComputer Science (R0)