Skip to main content

Towards Optimal Double-Length Hash Functions

  • Conference paper
Progress in Cryptology - INDOCRYPT 2005 (INDOCRYPT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3797))

Included in the following conference series:

Abstract

In this paper we design several double length hash functions and study their security properties in the random oracle model. We design a class of double length hash functions (and compression functions) which includes some recent constructions [4,6,10] . We also propose a secure double length hash function which is as efficient as the insecure concatenated classical hash functions [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellare, M.: A Note on Negligible Function. Journal of Cryptology 15(4), 271–284 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Canetti, R., Goldreich, O., Halvei, S.: The random oracle methodology, revisited. In: 30th Annual ACM Symposium on Theory of Computing (STOC), pp. 209–218 (1998)

    Google Scholar 

  3. Damgå, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

    Google Scholar 

  4. Finney, H.: More problems with hash functions. In: The cryptographic mailing list, 24 August (2004), Available at http://lists.virus.org/cryptography-0408/msg00124.html

  5. Hattori, M., Hirose, S., Yoshida, S.: Analysis of Double Block Lengh Hash Functions. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 290–302. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Hirose, S.: Provably Secure Double-Block-Length Hash Functions in a Black-Box Model. In: 7th International Conference on Information Security and Cryptology (2004)

    Google Scholar 

  7. Joux, A.: Multicollision on Iterated Hash Functions. Applications to Cascaded Constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)

    Google Scholar 

  8. Knudsen, L., Lai, X., Preneel, B.: Attacks on fast double block length hash functions. Journal of Cryptology 11(1) (winter 1998)

    Google Scholar 

  9. Knudsen, L., Preneel, B.: Construction of Secure and Fast Hash Functions Using Nonbinary Error-Correcting Codes. IEEE transactions on information theory 48(9) (September 2002)

    Google Scholar 

  10. Lucks, S.: Design principles for Iterated Hash Functions. ePrint Archive Report (2004), Available at http://eprint.iacr.org/2004/253

  11. Merkle, R.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

    Google Scholar 

  12. Meyer, C.H., Schilling, M.: Secure program load with manipulation detection code. In: Proceedings Securicom, pp. 111–130 (1988)

    Google Scholar 

  13. Nandi, M., Lee, W., Sakurai, K., Lee, S.: Security Analysis of a 2/3-rate Double Length Compression Function in The Black-Box Model. Fast Software Encryption (2005)

    Google Scholar 

  14. Nandi, M., Stinson, D.R.: Multicollision Attacks on Generalized Hash Functions. Cryptology ePrint Archive (2004), Available at http://eprint.iacr.org/2004/330

  15. Stinson, D.R.: Cryptography: Theory and Practice, 2nd edn. CRC Press, Inc, Boca Raton

    Google Scholar 

  16. Stinson, D.R.: Some observations on the theory of cryptographic hash functions. ePrint Archive Report (2001), Available at http://eprint.iacr.org/2001/020/

  17. Satoh, T., Haga, M., Kurosawa, K.: Towards Secure and Fast Hash Functions. IEICE Trans. E86-A(1) (January 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nandi, M. (2005). Towards Optimal Double-Length Hash Functions. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds) Progress in Cryptology - INDOCRYPT 2005. INDOCRYPT 2005. Lecture Notes in Computer Science, vol 3797. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596219_7

Download citation

  • DOI: https://doi.org/10.1007/11596219_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30805-8

  • Online ISBN: 978-3-540-32278-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics