Abstract
Embedded systems are now ubiquitous and ubiquitous computing is now getting embedded in our day-to-day lives. Such systems are cost and power sensitive. Various nanotechnologies will provide an excellent vehicle to reduce cost and power consumption, while still meeting performance constraints. Nanoscale device technologies, such as carbon nanotube transistors, nanowires, resonant-tunneling devices, quantum cellular automata, single electron transistors, tunneling phase logic, and a host of others, have made significant advances in the last few years. However, circuit and system design methodologies for these technologies are still in their infancy. Industrial roadmaps project that these emergent technologies will make inroads in the commercial market within a decade. Therefore, such design methodologies are necessary for precise design and fabrication of nanocircuits and nanoarchitectures.
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jha, N.K. (2005). Nanotechnology in the Service of Embedded and Ubiquitous Computing. In: Yang, L.T., Amamiya, M., Liu, Z., Guo, M., Rammig, F.J. (eds) Embedded and Ubiquitous Computing – EUC 2005. EUC 2005. Lecture Notes in Computer Science, vol 3824. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596356_1
Download citation
DOI: https://doi.org/10.1007/11596356_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30807-2
Online ISBN: 978-3-540-32295-5
eBook Packages: Computer ScienceComputer Science (R0)