Abstract
A formal framework for SMP is important because it facilitates the building of algorithm model and the evaluation of algorithms. First, we propose a formal definition of schema matching that is named multivalent matching, i.e., an individual of source schema can be associated with a set of individuals of target schema. Second, we develop the algebraic framework of multivalent matching that is called schema homomorphism and propose the algorithm model of SMP. Then, we discuss the relations between match cardinality and variants of schema homomorphism.
Similar content being viewed by others
References
Hell, P.: Algorithmic aspects of graph homomorphisms. Combinatorics 2003, London Math. Society. Lecture Note Series 307, 239–276.
Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal 10, 334–350 (2001)
Zhang, Z., Che, H.Y., Shi, P.-f., Sun, Y., Gu, J.: Multi-labeled graph matching - an algorithm model for schema matching. In: Grumbach, S., Sui, L., Vianu, V. (eds.) ASIAN 2005. LNCS, vol. 3818, pp. 90–103. Springer, Heidelberg (2005)
Zhang, Z., Che, H., Shi, P.-f., Sun, Y., Gu, J.: An algebraic framework for schema matching. In: Fan, W., Wu, Z., Yang, J. (eds.) WAIM 2005. LNCS, vol. 3739, pp. 694–699. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, Z., Che, H., Shi, P., Sun, Y., Gu, J. (2005). Schema Homomorphism – An Algebraic Framework for Schema Matching. In: Grumbach, S., Sui, L., Vianu, V. (eds) Advances in Computer Science – ASIAN 2005. Data Management on the Web. ASIAN 2005. Lecture Notes in Computer Science, vol 3818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596370_25
Download citation
DOI: https://doi.org/10.1007/11596370_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30767-9
Online ISBN: 978-3-540-32249-8
eBook Packages: Computer ScienceComputer Science (R0)