Abstract
This paper presents a new approach for human identification at a distance using gait recognition. Binarized silhouette of a motion object is represented by 1-D signals which are the basic image features called the distance vectors. The distance vectors are differences between the bounding box and silhouette, and extracted using four view directions to silhouette. Based on normalized correlation on the distance vectors, gait cycle estimation is first performed to extract the gait cycle. Second, eigenspace transformation based on PCA is applied to time-varying distance vectors and then Mahalanobis and normalized Euclidean distances based supervised pattern classification is finally performed in the lower-dimensional eigenspace for human identification. Experimental results on two main database demonstrate that the right person in top two matches 100% of the times for the cases where training and testing sets corresponds to the walking styles for data set of 25 people, and other data set of 22 people.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Nixon, M.S., Carter, J.N.: Advances in Automatic Gait Recognition. In: Proc. of IEEE Int. Conf. on Automatic Face and Gesture Recognition (2004)
Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette Analysis-Based Gait Recognition for Human Identification. IEEE Trans. on Patttern Analysis Machine Intelligence 25(12) (2003)
BenAbdelkader, C., Cutler, R.G., Davis, L.S.: Gait Recognition Using Image Self-Similarity. EURASIP Journal of Applied Signal Processing, 1–14 (April 2004)
Huang, P., et al.: Human Gait Recognition in Canonical Space Using Temporal Templates. In: IEE Proc. of Vision Image and Signal Proc., Con., vol. 146(2) (1999)
Ekinci, M., Gedikli, E.: Background Estimation Based People Detection and Tracking for Video Surveillance. In: Yazıcı, A., Şener, C. (eds.) ISCIS 2003. LNCS, vol. 2869, pp. 421–429. Springer, Heidelberg (2003)
Sarkar, S., et al.: The HumanID Gait Challenge Problem: Data Sets, Performance, and Analysis. IEEE Trans. on Pat. Anal. and Mach. Intell. 27(2) (February 2005)
Kale, A., et al.: Identification of Humans Using Gait. IEEE Trans. on Image Processing 13(9) (September 2004)
Liu, Y., Collins, R.T., Tsin, T.: Gait Sequence Analysis using Frieze Patterns. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 657–671. Springer, Heidelberg (2002)
BenAbdelkader, C., Culter, R., Davis, L.: Stride and Cadence as a Biometric in Automatic Person Identification and Verification. In: Proc. Int. Conf. Aut. Face and Gesture Recognition (2002)
Collins, R., Gross, R., Shi, J.: Silhouette-Based Human Identification from Body Shape and Gait. In: Proc. Int. Conf. Automatic Face and Gesture Recognition (2002)
Ekinci, M., Gedikli, E.: Novel Approach on Silhouette Based Human Motion Analysis for Gait Recognition. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 219–226. Springer, Heidelberg (2005)
Phillips, J., et al.: The FERET Evaluation Methodology for Face recognition Algorithm. IEEE Trans. Patt. Anal. and Mach. Int. 22(10) (October 2000)
Gross, R., Shi, J.: The CMU motion of body (MOBO) database. Tech. Rep. CMU-RI-TR-01-18, Robotics Institute, Carnegie Mellon University (June 2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ekinci, M., Gedikli, E. (2005). Gait Recognition Using View Distance Vectors. In: Hao, Y., et al. Computational Intelligence and Security. CIS 2005. Lecture Notes in Computer Science(), vol 3801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596448_144
Download citation
DOI: https://doi.org/10.1007/11596448_144
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30818-8
Online ISBN: 978-3-540-31599-5
eBook Packages: Computer ScienceComputer Science (R0)