Skip to main content

Gait Recognition Using View Distance Vectors

  • Conference paper
Computational Intelligence and Security (CIS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3801))

Included in the following conference series:

  • 1750 Accesses

Abstract

This paper presents a new approach for human identification at a distance using gait recognition. Binarized silhouette of a motion object is represented by 1-D signals which are the basic image features called the distance vectors. The distance vectors are differences between the bounding box and silhouette, and extracted using four view directions to silhouette. Based on normalized correlation on the distance vectors, gait cycle estimation is first performed to extract the gait cycle. Second, eigenspace transformation based on PCA is applied to time-varying distance vectors and then Mahalanobis and normalized Euclidean distances based supervised pattern classification is finally performed in the lower-dimensional eigenspace for human identification. Experimental results on two main database demonstrate that the right person in top two matches 100% of the times for the cases where training and testing sets corresponds to the walking styles for data set of 25 people, and other data set of 22 people.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nixon, M.S., Carter, J.N.: Advances in Automatic Gait Recognition. In: Proc. of IEEE Int. Conf. on Automatic Face and Gesture Recognition (2004)

    Google Scholar 

  2. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette Analysis-Based Gait Recognition for Human Identification. IEEE Trans. on Patttern Analysis Machine Intelligence 25(12) (2003)

    Google Scholar 

  3. BenAbdelkader, C., Cutler, R.G., Davis, L.S.: Gait Recognition Using Image Self-Similarity. EURASIP Journal of Applied Signal Processing, 1–14 (April 2004)

    Google Scholar 

  4. Huang, P., et al.: Human Gait Recognition in Canonical Space Using Temporal Templates. In: IEE Proc. of Vision Image and Signal Proc., Con., vol. 146(2) (1999)

    Google Scholar 

  5. Ekinci, M., Gedikli, E.: Background Estimation Based People Detection and Tracking for Video Surveillance. In: Yazıcı, A., Åžener, C. (eds.) ISCIS 2003. LNCS, vol. 2869, pp. 421–429. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Sarkar, S., et al.: The HumanID Gait Challenge Problem: Data Sets, Performance, and Analysis. IEEE Trans. on Pat. Anal. and Mach. Intell. 27(2) (February 2005)

    Google Scholar 

  7. Kale, A., et al.: Identification of Humans Using Gait. IEEE Trans. on Image Processing 13(9) (September 2004)

    Google Scholar 

  8. Liu, Y., Collins, R.T., Tsin, T.: Gait Sequence Analysis using Frieze Patterns. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 657–671. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. BenAbdelkader, C., Culter, R., Davis, L.: Stride and Cadence as a Biometric in Automatic Person Identification and Verification. In: Proc. Int. Conf. Aut. Face and Gesture Recognition (2002)

    Google Scholar 

  10. Collins, R., Gross, R., Shi, J.: Silhouette-Based Human Identification from Body Shape and Gait. In: Proc. Int. Conf. Automatic Face and Gesture Recognition (2002)

    Google Scholar 

  11. Ekinci, M., Gedikli, E.: Novel Approach on Silhouette Based Human Motion Analysis for Gait Recognition. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 219–226. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Phillips, J., et al.: The FERET Evaluation Methodology for Face recognition Algorithm. IEEE Trans. Patt. Anal. and Mach. Int. 22(10) (October 2000)

    Google Scholar 

  13. Gross, R., Shi, J.: The CMU motion of body (MOBO) database. Tech. Rep. CMU-RI-TR-01-18, Robotics Institute, Carnegie Mellon University (June 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ekinci, M., Gedikli, E. (2005). Gait Recognition Using View Distance Vectors. In: Hao, Y., et al. Computational Intelligence and Security. CIS 2005. Lecture Notes in Computer Science(), vol 3801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596448_144

Download citation

  • DOI: https://doi.org/10.1007/11596448_144

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30818-8

  • Online ISBN: 978-3-540-31599-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics