Abstract
Naive Bayes is one of the most efficient and effective learning algorithms for machine learning, pattern recognition and data mining. But its conditional independence assumption is rarely true in real-world applications. We show that the independence assumption can be approximated by orthogonally rotational transformation of input space. During the transformation process, the continuous attributes are treated in different ways rather than simply applying discretization or assuming them to satisfy some standard probability distribution. Furthermore, the information from unlabeled instances can be naturally utilized to improve parameter estimation without considering the negative effect caused by missing class labels. The empirical results provide evidences to support our explanation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Harry, Z., Charles, X.L.: A Fundamental Issue of Naive Bayes. In: Xiang, Y., Chaib-draa, B. (eds.) Canadian AI 2003. LNCS (LNAI), vol. 2671, pp. 591–602. Springer, Heidelberg (2003)
Stijn, V., Richard, D., Guido, D.: Boosting Naive Bayes for Claim Fraud Diagnosis. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. LNCS, vol. 2454, pp. 202–211. Springer, Heidelberg (2002)
LiMin, W., SenMiao, Y., Ling, L., HaiJun, L.: Improving the Performance of Decision Tree: A Hybrid Approach. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 1056–1064. Springer, Heidelberg (2004)
Marco, B., Jordi, V.: Improving Naive Bayes Using Class-Conditional ICA. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 1–10. Springer, Heidelberg (2002)
Marco, R., Paola, S.: Robust Bayes classifiers. Artificial Intelligence 125, 209–226 (2001)
ChunNan, H., HungJu, H., TzuTsung, W.: Implications of the Dirichlet Assumption for Discretization of Continuous Variables in Naive Bayesian Classifiers. Machine Learning 53, 235–263 (2003)
João, G.: A Linear-Bayes Classifier. In: Monard, M.C., Sichman, J.S. (eds.) SBIA 2000 and IBERAMIA 2000. LNCS (LNAI), vol. 1952, pp. 49–58. Springer, Heidelberg (2000)
Limin, W., Senmiao, Y.: Induction of hybrid decision tree based on post-discretization strategy. Progress in Natural Science 14, 541–545 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, L., Cao, C., Li, H., Chen, H., Dong, L. (2005). Orthogonally Rotational Transformation for Naive Bayes Learning. In: Hao, Y., et al. Computational Intelligence and Security. CIS 2005. Lecture Notes in Computer Science(), vol 3801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596448_21
Download citation
DOI: https://doi.org/10.1007/11596448_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30818-8
Online ISBN: 978-3-540-31599-5
eBook Packages: Computer ScienceComputer Science (R0)