Skip to main content

Statistical Model Selection Methods Applied to Biological Networks

  • Conference paper
Transactions on Computational Systems Biology III

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 3737))

  • 577 Accesses

Abstract

Many biological networks have been labelled scale-free as their degree distribution can be approximately described by a powerlaw distribution. While the degree distribution does not summarize all aspects of a network it has often been suggested that its functional form contains important clues as to underlying evolutionary processes that have shaped the network. Generally determining the appropriate functional form for the degree distribution has been fitted in an ad-hoc fashion.

Here we apply formal statistical model selection methods to determine which functional form best describes degree distributions of protein interaction and metabolic networks. We interpret the degree distribution as belonging to a class of probability models and determine which of these models provides the best description for the empirical data using maximum likelihood inference, composite likelihood methods, the Akaike information criterion and goodness-of-fit tests. The whole data is used in order to determine the parameter that best explains the data under a given model (e.g. scale-free or random graph). As we will show, present protein interaction and metabolic network data from different organisms suggests that simple scale-free models do not provide an adequate description of real network data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrafioti, I., Swire, J., Abbott, J., Huntley, D., Butcher, S., Stumpf, M.P.H.: Comparative analysis of the Saccharomyces cerevisiae and Caenorhabditis elegans protein interaction networks. BMC Evolutionary Biology 5, 23 (2005)

    Article  Google Scholar 

  2. Akaike, H.: Information measures and model selection. In: Proceedings of the 44th Session of the International Statistical Institute, pp. 277–291 (1983)

    Google Scholar 

  3. Albert, R., Barabási, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)

    Article  MATH  Google Scholar 

  4. Anderson, T.W., Darling, D.A.: Asymptotic theory of certain goodness-of-fit criteria based on stochastc processes. Ann.Math.Stat. 23, 193 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  5. Anderson, T.W., Darling, D.A.: A test of goodness of fit. J.Am.Stat.Assoc. 49, 765 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509 (1999)

    Article  MathSciNet  Google Scholar 

  7. Bollobás, B.: Random Graphs. Academic Press, London (1998)

    Google Scholar 

  8. Bollobás, B., Riordan, O.: Mathematical results on scale-free graphs. In: Bornholdt, S., Schuster, H. (eds.) Handbook of Graphs and Networks, pp. 1–34. Wiley-VCH, Chichester (2003)

    Google Scholar 

  9. Burda, Z., Diaz-Correia, J., Krzywicki, A.: Statistical ensemble of scale-free random Graphs. Phys. Rev. E 64, 46118 (2001)

    Article  Google Scholar 

  10. Burnham, K., Anderson, D.: Model selection and multimodel inference: A practical information-theoretic approach. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  11. Cox, D.R., Reid: A note on pseudolikelihood constructed from marginal densities. Biometrika 91, 729 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Davison, A.: Statistical models. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  13. Dorogovtsev, S., Mendes, J.: Evolution of Networks. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  14. Dorogovtsev, S., Mendes, J., Samukhin, A.: Multifractal properties of growing networks. Europhys. Lett. 57, 334 (2002); cond–mat/0106142

    Article  Google Scholar 

  15. Ito, T., Tashiro, K., Muta, S., Ozawa, R., Chiba, T., Nishizawa, M., Yamamoto, K., Kuhara, S., Sakaki, Y.: Towards a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. PNAS 97, 1143 (2000)

    Article  Google Scholar 

  16. Maslov, S., Sneppen, K.: Specificity and stability in topology or protein networks. Science 296, 910 (2002)

    Article  Google Scholar 

  17. May, R., Lloyd, A.: Infection dynamics on scale-free networks. Phys. Rev. E 64, 66112 (2001)

    Article  Google Scholar 

  18. Newman, M., Strogatz, S., Watts, D.: Random graphs with arbitrary degree distribution and their application. Phys. Rev. E 64, 026118 (2001); cond–mat/0007235

    Article  Google Scholar 

  19. Qin, H., Lu, H., Wu, W., Li, W.: Evolution of the yeast interaction network. PNAS 100, 12820 (2003)

    Article  Google Scholar 

  20. Strimmer, K., Rambaut, A.: Inferring confidence sets of possibly misspecified gene trees. Proc. Roy. Soc. Lond. B 269, 127 (2002)

    Article  Google Scholar 

  21. Stumpf, M.P.H., Wiuf, C., May, R.M.: Subnets of scale-free networks are not scale-free: the sampling properties of random networks. PNAS 103, 4221 (2005)

    Article  Google Scholar 

  22. Wagner, A.: The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Biol. Evol. 18, 1283 (2001)

    Google Scholar 

  23. Xenarios, I., Rice, D., Salwinski, L., Baron, M., Marcotte, E., Eisenberg, D.: Dip: the database of interacting proteins. Nucl. Acid. Res. 28, 289 (2000)

    Article  Google Scholar 

  24. Yook, S., Oltvai, Z., Barabási, A.: Functional and topological characterization of protein interaction networks. Proteomics 4, 928 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stumpf, M.P.H., Ingram, P.J., Nouvel, I., Wiuf, C. (2005). Statistical Model Selection Methods Applied to Biological Networks. In: Priami, C., Merelli, E., Gonzalez, P., Omicini, A. (eds) Transactions on Computational Systems Biology III. Lecture Notes in Computer Science(), vol 3737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11599128_5

Download citation

  • DOI: https://doi.org/10.1007/11599128_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30883-6

  • Online ISBN: 978-3-540-31446-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics