Skip to main content

Frequency Concepts and Pattern Detection for the Analysis of Motifs in Networks

  • Conference paper
Transactions on Computational Systems Biology III

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 3737))

Abstract

Network motifs, patterns of local interconnections with potential functional properties, are important for the analysis of biological networks. To analyse motifs in networks the first step is to find patterns of interest. This paper presents 1) three different concepts for the determination of pattern frequency and 2) an algorithm to compute these frequencies. The different concepts of pattern frequency depend on the reuse of network elements. The presented algorithm finds all or highly frequent patterns under consideration of these concepts. The utility of this method is demonstrated by applying it to biological data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  2. Shen-Orr, S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetices 31, 64–68 (2002)

    Article  Google Scholar 

  3. Wuchty, S., Oltvai, Z.N., Barabási, A.L.: Evolutionary conservation of motif constituents in the yeast protein interaction network. Nature Genetics 35, 176–179 (2003)

    Article  Google Scholar 

  4. Mangan, S., Alon, U.: Structure and function of the feed-forward loop network motif. In: Proceedings of the National Academy of Sciences, vol. 100, pp. 11980–11985 (2003)

    Google Scholar 

  5. Inokuchi, A., Washio, T., Motoda, H.: Complete mining of frequent patterns from graphs: Mining graph data. Machine Learning 50, 321–354 (2003)

    Article  MATH  Google Scholar 

  6. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: IEEE International Conference on Data Mining (ICDM), pp. 313–320 (2001)

    Google Scholar 

  7. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: IEEE International Conference on Data Mining (ICDM), pp. 721–724 (2002)

    Google Scholar 

  8. Kuramochi, M., Karypis, G.: Finding frequent patterns in a large sparse graph. In: SIAM International Conference on Data Mining, SDM 2004 (2004)

    Google Scholar 

  9. Vanetik, N., Gudes, E., Shimony, S.E.: Computing frequent graph patterns from semistructured data. In: IEEE International Conference on Data Mining (ICDM), pp. 458–465 (2002)

    Google Scholar 

  10. Harary, F., Palmer, E.M.: Graphical Enumeration. Academic Press, New York (1973)

    MATH  Google Scholar 

  11. Kuramochi, M., Karypis, G.: An efficient algorithm for discovering frequent subgraphs. Technical Report 02-026, Department of Computer Science, University of Minnesota (2002)

    Google Scholar 

  12. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  13. Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., Zeitlinger, J., Jennings, E.G., Murray, H.L., Gordon, D.B., Ren, B., Wyrick, J.J., Tagne, J.B., Volkert, T.L., Fraenkel, E., Gifford, D.K., Young, R.A.: Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002)

    Article  Google Scholar 

  14. Ma, H., Zeng, A.P.: Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics 19, 270–277 (2003)

    Article  Google Scholar 

  15. Srinivasan, A., King, R.D., Muggleton, S.H., Sternberg, M.J.E.: The predictive toxicology evaluation challenge. In: 15th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1–6 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schreiber, F., Schwöbbermeyer, H. (2005). Frequency Concepts and Pattern Detection for the Analysis of Motifs in Networks. In: Priami, C., Merelli, E., Gonzalez, P., Omicini, A. (eds) Transactions on Computational Systems Biology III. Lecture Notes in Computer Science(), vol 3737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11599128_7

Download citation

  • DOI: https://doi.org/10.1007/11599128_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30883-6

  • Online ISBN: 978-3-540-31446-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics