Abstract
Nodes in wireless sensor networks have very limited storage capacity, computing ability and battery power. Node failure and communication link disconnection occur frequently, which means weak services of the network layer. Sensing data is inaccurate which often has errors. Focusing on inaccuracy of the observation data and power limitation of sensors, this paper proposes a sampling frequency control algorithm and a data compression algorithm. Based on features of the sensing data, these two algorithms are combines together. First, it adjusts the sampling frequency on sensing data dynamically. When the sampling frequency cannot be controlled, data compression algorithm is adopted to reduce the amount of transmitted data to save energy of sensors. Experiments and analysis show that the proposed sampling control algorithm and the data compression algorithm can decrease sampling times, reduce the amount of transmitted data and save energy of sensors.
Supported by the National Natural Science Foundation of China under Grant No.60473075 and No.60273082; the Natural Science Foundation of Heilongjiang Province of China under Grant No.ZJG03-05 and No.QC04C40.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A Survey on Sensor Networks. IEEE Communications Magazine 40(8), 102–114 (2002); Rentala, P., Musunuri, R., Gandham, S., Saxena, U.: Survey on sensor networks. Technical Report, UTDCS-33-02, University of Texas at Dallas (2002)
Bonnet, P., Gehrke, J.E., Seshadri, P.: Towards sensor database systems. In: Tan, K.-L., Franklin, M.J., Lui, J.C.-S. (eds.) MDM 2001. LNCS, vol. 1987, pp. 3–14. Springer, Heidelberg (2000)
Yao, Y., Gehrke, J.: The cougar approach to in-network query processing in sensor networks. SIGMOD Record 31(3), 9–18 (2002)
Gerhke, J.: COUGAR design and implementation, http://www.cs.cornell.edu/database/cougar/
Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acquisitional query processor for sensor networks. In: Halevy, A.Y., Ives, Z.G., Doan, A.H. (eds.) Proceedings of the SIGMOD Conference, pp. 491–502. ACM Press, New York (2003)
Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: A Tiny Aggregation Service for ad hoc Sensor Networks. In: OSDI Conf. (2002)
University of California at Berkeley. TinyDB, http://telegraph.cs.berkeley.edu/tinydb/
Gehrke, Y.Y.J.: Query Processing for Sensor Networks. In: Proceedings of 1st Biennial Conference on Innovative Data Systems Research (CIDR 2003), Asilomar, CA (January 2003)
Madden, S., Franklin, M.J.: Fjording the stream: An architechture for queries over streaming sensor data. In: Ceri, S., di Milano, P. (eds.) Proceedings of the ICDE Conference, pp. 555–666. IEEE Computer Press, Los Alamitos (2002)
Beaver, J., Sharaf, M.A., Labrinidis, A., Chrysanthis, P.K.: Power-Aware In-Network Query Processing for Sensor Data. In: The Proceedings of the 2nd Hellenic Data Management Symposium (September 2003)
Sharaf, M.A., Beaver, J., Labrinidis, A., Chrysanthis, P.K.: TiNA: A Scheme for Temporal Coherency-Aware in-Network Aggregation. In: The Proceedings of the 3rd ACM MobiDE Workshop (September 2003)
Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Hierarchical in-Network Data Aggregation with Quality Guarantees. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 658–675. Springer, Heidelberg (2004)
Olston, C., Jiang, J., Widom, J.: Adaptive Filters for Continuous Queries over Distributed Data Streams. In: ACM SIGMOD Conference, pp. 563–574 (2003)
Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating Probabilistic Queries over Imprecise Data. In: ACM SIGMOD Conference, pp. 551–562 (2003)
Lazaridis, I., Mehrotra, S.: Capturing Sensor-Generated Time Series with Quality Guarantees. In: Proc. of the Intl. Conf. on Data Engineering (ICDE 2003), pp. 429–441 (2003)
Considine, J., Li, F., Kollios, G., Byers, J.: Approximate Aggregation Techniques for Sensor Databases. In: Proceedings of 20th IEEE International Conference on Data Engineering (ICDE 2004), Boston, MA, March 30 - April 2 (2004)
Madden, S.: The Design and Evaluation of a Query Processing Architecture for Sensor Networks. Ph.D. Thesis. UC Berkeley (Fall 2003), A. Deligiannakis, Y. Kotidis, N. Roussopoulos
McPhaden, M.J.: Tropical atmosphere ocean project. Pacific marine environmental laboratory, http://www.pmel.noaa.gov/tao/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, J., Li, J. (2005). Data Sampling Control and Compression in Sensor Networks. In: Jia, X., Wu, J., He, Y. (eds) Mobile Ad-hoc and Sensor Networks. MSN 2005. Lecture Notes in Computer Science, vol 3794. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11599463_5
Download citation
DOI: https://doi.org/10.1007/11599463_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30856-0
Online ISBN: 978-3-540-32276-4
eBook Packages: Computer ScienceComputer Science (R0)