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Abstract. In this work, we introduce and study a simple, graph-theoretic model for selfish scheduling among m non-
cooperative users over a collection of n machines; however, each user is restricted to assign its unsplittable load to one
from a pair of machines that are allowed for the user. We model these bounded interactions using an interaction graph,
whose vertices and edges are the machines and the users, respectively. We study the impact of our modeling assumptions
on the properties of Nash equilibria in this new model. The main findings of our study are outlined as follows:

– We prove, as our main result, that the parallel links graph is the best-case interaction graph – the one that minimizes
expected makespan – among all 3-regular interaction graphs. The proof employs a graph-theoretic lemma about
orientations in 3-regular graphs, which may be of independent interest.

– We prove a lower bound on Coordination Ratio [15] – a measure of the cost incurred to the system due to the
selfish behavior of the users. In particular, we prove that there is an interaction graph incurring Coordination Ratio

Ω

�
log n

log log n � . This bound is shown for pure Nash equilibria.

– We present counterexample interaction graphs to prove that a fully mixed Nash equilibrium may sometimes not
exist at all. Moreover, we prove properties of the fully mixed Nash equilibrium for complete bipartite graphs and
hypercube graphs.

1 Introduction
Motivation and Framework. Consider a group of m non-cooperative users, each wishing to assign its unsplittable unit job
onto a collection of n processing (identical) machines. The users seek to arrive at a stable assignment of their jobs for their
joint interaction. As usual, such stable assignments are modeled as Nash equilibria [20], where no user can unilaterally
improve its objective by switching to a different strategy.

We use a structured and sparse representation of the relation between the users and the machines that exploits the lo-
cality of their interaction; such locality almost always exists in complex scheduling systems. More specifically, we assume
that each user has access (that is, finite cost) to only two machines; its cost on other machines is infinitely large, giving it
no incentive to switch there. The (expected) cost of a user is the (expected) load of the machine it chooses. Interaction with
just a few neighbors is a basic design principle to guarantee efficient use of resources in a distributed system. Restricting
the number of interacting neighbors to just two is then a natural starting point for the theoretical study of the impact of
selfish behavior in a distributed system with local interactions.

Our representation is based on the interaction graph, whose vertices and (undirected) edges represent the machines
and the users, respectively. Multiple edges are allowed; however, for simplicity, our interaction multigraphs will be called
interaction graphs. The model of interaction graphs is interesting because it is the simplest, non-trivial model for selfish
scheduling on restricted parallel links. In this model, any assignment of users to machines naturally corresponds to an
orientation of the interaction graph. (Each edge is directed to the machine where the user is assigned.)

We will consider pure Nash equilibria, where each user assigns its load to exactly one of its two allowed machines
with probability one; we will also consider mixed Nash equilibria, where each user employs a probability distribution to
choose between its two allowed machines. Of particular interest to us is the fully mixed Nash equilibrium [19] where every
user has strictly positive probability to choose each of its two machines. In the standard fully mixed Nash equilibrium,
all probabilities are equal to 1

2 . It is easy to see that the standard fully mixed Nash equilibrium exists if and only if the
(multi)graph is regular.

With each (mixed) Nash equilibrium, we associate a Social Cost [15] which is the expected makespan - the expectation
of the maximum, over all machines, total load on the machine. Best-case and worst-case Nash equilibria minimize and
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maximize Social Cost, respectively. For a given type of Nash equilibrium such as the standard fully mixed Nash equilib-
rium, best-case and worst-case graphs among a graph class minimize and maximize Social Cost of Nash equilibria of the
given type, respectively. The assignment of users to machines that minimizes Social Cost might not necessarily be a Nash
equilibrium; call Optimum this least possible Social Cost. We will investigate Coordination Ratio [15] - the worst-case ratio
over all Nash equilibria, of Social Cost over Optimum. We are interested in understanding the interplay between the topol-
ogy of the underlying interaction graph and the various existence, algorithmic, combinatorial, structural and optimality
properties of Nash equilibria in this new model of selfish restricted scheduling with bounded interaction.

Contribution and Significance. We partition our results into three major groups:

3-regular interaction graphs (Section 3). It is easy to prove that the Social Cost of the standard fully mixed Nash equilibrium
for any d-regular graph is d − f(d, n), where f(d, n) is a function that goes to 0 as n goes to infinity. This gives a general
but rather rough estimation of Social Cost for d-regular graphs; moreover, it does not say how the specific structure of
each particular 3-regular graph affects the Social Cost of the standard fully mixed Nash equilibrium. We continue to prove
much sharper estimations for the special class of 3-regular graphs. Restricting our model of interaction graphs to 3-regular
graphs led us to discover some nice structural properties of orientations in 3-regular graphs, which were motivated by Nash
equilibria. However, we have so far been unable to generalize these properties to regular graphs of degree higher than 3.

We pursue a thorough study of 3-regular interaction graphs; these graphs further restrict the bounded interaction by
insisting that each machine is accessible to just three users. Specifically, we focus on the standard fully mixed Nash
equilibrium where all probabilities of assigning users to machines are 1

2 . We ask which the best 3-regular interaction
graph is in this case. This question brings into context the problem of comparing against each other the expected number
of 2-orientations and 3-orientations - those with makespan 2 and 3, respectively. The manner in which these numbers
outweigh each other brings Social Cost closer to either 2 or 3. We develop some deep graph-theoretic lemmas about 2-
and 3-orientations in 3-regular graphs to prove, as our main result, that the simplest 3-regular parallel links graph is the
best-case 3-regular graph in this setting. The proof decomposes any 3-regular graph down to the parallel links graph in a
way that Social Cost of the standard fully mixed Nash equilibrium does not increase. The graph theoretic lemmas about
2- and 3-orientations are proved using both counting and mapping techniques; both the lemmas and their proof techniques
are, we believe, of more general interest and applicability.

Bound on Coordination Ratio (Section 4). For the more general model of restricted parallel links, a tight bound of Θ( log n
log log n )

on Coordination ratio restricted to pure Nash equilibria was shown in [8, Theorem 5.2] and independently in [1, Theorem 1].
This implies an upper bound of O( log n

log log n ) on the Coordination Ratio for pure Nash equilibria in our model as well. We

construct an interaction graph incurring Coordination Ratio Ω( log n
log log n ) to prove that this bound is tight for the model of

interaction graphs as well. The construction extends an approach followed in [8, Lemma 5.1] that proved the same lower
bound for the more general model of restricted parallel links.

The Fully Mixed Nash Equilibrium (Section 5). We pursue a thorough study of fully mixed Nash equilibria across interac-
tion graphs. Our findings are outlined as follows:

– There exist counterexample interaction graphs for which fully mixed Nash equilibria may not exist. Among them are
all trees and meshes. These counterexamples provide some insight about a possible graph-theoretic characterization of
interaction graphs admitting a fully mixed Nash equilibrium. 4-cycles and 1-connectivity are factors expected to play
a role in this characterization.

– We next consider the case where infinitely many fully mixed Nash equilibria may exist. In this case, the fully mixed
Nash dimension is defined to be the dimension d of the smallest d-dimensional space that can contain all fully mixed
Nash equilibria. For complete bipartite graphs, we prove a dichotomy theorem that characterizes unique existence. The
proof employs arguments from Linear Algebra. For hypercubes, we have only been able to prove that the fully mixed
Nash dimension is the hypercube dimension for hypercubes of dimension 2 or 3. We conjecture that this is true for all
hypercubes, but we have only been able to observe that the hypercube dimension is a lower bound on the fully mixed
Nash dimension (for all hypercubes).

– We are finally interested in understanding whether (or when) the fully mixed Nash equilibrium is the worst-case
one in this setting. We present counterexample interaction graphs to show that the fully mixed Nash equilibrium is
sometimes the worst-case Nash equilibrium, but sometimes not. For the hypercube, there is a pure Nash equilibrium
that is worse (with respect to Social Cost) than the fully mixed one. On the other hand, for the 3-cycle the fully mixed
Nash equilibrium has worst Social Cost.

Related Work and Comparison. Our model of interaction graphs is the special case of the model of restricted parallel
links introduced and studied in [8], where each user is now further restricted to have access to only two machines. The
work in [8] focused on the problem of computing pure Nash equilibria for that more general model. Awerbuch et al. [1]
also considered the model of restricted parallel links, and proved a tight upper bound of Θ( log n

log log log n ) on Coordination
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Ratio for all (mixed) Nash equilibria. This implies a corresponding upper bound for our model of interaction graphs. It
is an open problem whether this bound of O( log n

log log log n ) is tight for the model of interaction graphs, or whether a better
upper bound on Coordination Ratio for all (mixed) Nash equilibria can be proved.

The model of restricted parallel links is, in turn, a generalization of the so called KP-model for selfish routing [15],
which has been extensively studied in the last five years; see e.g. [3–10, 18, 19]. Social Cost and Coordination Ratio were
originally introduced in [15]. Bounds on Coordination Ratio are proved in [3, 7–9, 19]. The fully mixed Nash equilibrium
was introduced and studied in [19], where its unique existence was proved for the original KP-model. The Fully Mixed
Nash Equilibrium Conjecture, stating that the fully mixed Nash equilibrium maximizes Social Cost, has been studied in
[8–10, 18].

The model of interaction graphs is an alternative to graphical games [13] studied in the Artificial Intelligence commu-
nity. The essential difference is that in graphical games, users and resources are modeled as vertices and edges, respectively.
The problem of computing Nash equilibria for graphical games have been studied in [12, 13, 17]. Other studied variants of
graphical games include the network games studied in [11], multi-agent influence diagrams [14] and game networks [16].

2 Framework and Preliminaries

For all integers k ≥ 1, denote [k] = {1, . . . , k}.

Interaction Graphs. We consider a graph G = (V, E) where edges and vertices correspond to users and machines,
respectively. Assume there are m users and n machines, respectively, where m > 1 and n > 1. Each user has a unit job.
From here on, we shall refer to users and edges (respectively, machines and vertices) interchangeably. So, an edge connects
two vertices if and only if the user can place his job onto the two machines.

Strategies and Assignments. A pure strategy for a user is one of the two machines it connects; so, a pure strategy represents
an assignment of the user’s job to a machine. A mixed strategy for a user is a probability distribution over its pure strategies.
A pure assignment L = 〈`1, . . . , `m〉 is a collection of pure strategies, one for each user. A pure assignment induces an
orientation of the graph G in the natural way. A mixed assignment P = (pij)i∈[n],j∈[m] is a collection of mixed strategies,
one for each user. A mixed assignment F is fully mixed [19, Section 2.2] if all probabilities are strictly positive. The
standard fully mixed assignment F̃ is the fully mixed one where all probabilities are equal to 1

2 . The fully mixed dimension
of a graph G is the dimension d of the smallest d-dimensional space that contains all fully mixed Nash equilibria for this
graph.

Cost Measures. For a pure assignment L, the load of a machine j ∈ [n] is the number of users assigned to j. The
Individual Cost for user i ∈ [m] is λi = |{k : `k = `i}|, the load of the machine it chooses. For a mixed assignment
P = (pij)i∈[m],j∈[n], the expected load of a machine j ∈ [n] is the expected number of users assigned to j. The Expected
Individual Cost for user i ∈ [m] on machine j ∈ [n] is the expectation, according to P, of the Individual Cost for user i on
machine j, then, λij = 1 +

∑
k∈[m],k 6=i pkj . The Expected Individual Cost for user i ∈ [m] is λi =

∑
j∈[n] pijλij .

Associated with a mixed assignment P is the Social Cost SC(G,P) = EP

(
maxv∈[n] |{k : `k = v}|

)
, that is, Social

Cost is the expectation, according to P, of makespan (that is, maximum load). The Optimum OPT(G) is defined as the least
possible, over all pure assignments L = 〈`1, . . . , `n〉 ∈ [n]m, makespan; that is, OPT(G) = minL∈[n]m maxv∈[n] |{k :

`k = v}|.

Nash Equilibria and Coordination Ratio. We are interested in a special class of (pure or) mixed assignments called Nash
equilibria [20] that we describe here. The mixed assignment P is a Nash equilibrium [8, 15] if for each user i ∈ [m], it
minimizes λi(P) over all mixed assignments that differ from P only with respect to the mixed strategy of user i. Thus, in
a Nash equilibrium, there is no incentive for a user to unilaterally deviate from its own mixed strategy in order to decrease
its Expected Individual Cost. Clearly, this implies that λij = λi if pij > 0 whereas λij ≥ λi otherwise. We refer to these
conditions as Nash equations and Nash inequalities, respectively.

The Coordination Ratio CRG for a graph G is the maximum, over all Nash equilibria P, of the ratio SC(G,P)
OPT(G) ; thus,

CRG = maxP

SC(G,P)
OPT(G) . The Coordination Ratio CR is the maximum, over all graphs G and Nash equilibria P, of the ratio

SC(G,P)
OPT(G) ; thus, CR = maxG,P

SC(G,P)
OPT(G) . Our definitions for CRG and CR extend the original definition of Coordination

Ratio by Koutsoupias and Papadimitriou [15] to encompass interaction graphs.

Graphs and Orientations. Some special classes of graphs we shall consider include the cycle Cr on r vertices; the
complete bipartite graph (or biclique) Kr,s which is a simple bipartite graph with partite sets of size r and s respectively,
such that two vertices are adjacent if and only if they are in different partite sets; the hypercube Hr of dimension r whose
vertices are binary words of length r connected if and only if their Hamming distance is 1. For a graph G, denote ∆G
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the maximum degree of G. A graph is d-regular if all vertices have the same degree d. The graph consisting of 2 vertices
and 3 parallel edges will be called necklace. Also, for even n, G‖(n) will denote the parallel links graph, i.e., the graph
consisting of n

2 necklaces.
An orientation of an undirected graph G results when assigning directions to its edges. The makespan of a vertex in an

orientation α is the in-degree it has in α. The makespan of an orientation is the maximum vertex makespan. For any integer
d, a d-orientation is an orientation with makespan d in a graph G; denote d-or(G) the set of d-orientations of G.

3 3-Regular Graphs

In this section, we consider the problem of determining the best-case d-regular graph among the class of all d-regular
graphs with a given number of vertices (and, therefore, with the same number of edges), with respect to the Social Cost of
the standard fully mixed Nash equilibrium, where all probabilities are equal to 1/2.
A Rough Estimation. We start with a rough estimation of the Social Cost of any d-regular graph G, where d ≥ 2. We
first prove a technical lemma about the probability that such a random orientation has makespan at most d− 1. Denote this
probability qd(G).

Lemma 1. Let I be an independent set of G. Then, qd(G) ≤
(
1 − 1

2d

)|I|.
.

We are now ready to prove:

Theorem 1. For a d-regular graph G with n vertices, SC(F̃, G) = d − f(n, d), where f(n, d) → 0 as n → ∞.

Proof. Since every maximal independent set of G has size at least d n
d+1e, Lemma 1 implies that qd(G) ≤

(
1 − 1

2d

) n
d+1 .

Thus, SC(F̃, G) ≥ qd(G) + d(1− qd(G)) = d− (d− 1)qd(G), so that SC(F̃, G) = d− f(n, d), where f(n, d) tends to 0

as n → ∞, as needed. ut

Cactoids and the Two-Sisters Lemma. The rest of our analysis will deal with 3-regular graphs. We will be able to
significantly strengthen and improve Theorem 1 for the special case of 3-regular graphs. We define a structure that we will
use in our proofs.

Definition 1 (Cactoids). A cactoid is a pair Ĝ = 〈V, Ê〉, where V is a set of vertices and Ê is a set consisting of undirected
edges between vertices, and pointers to vertices, i.e., loose edges incident to one single vertex.

A cactoid is called 3-regular if each vertex is incident to three elements from Ê. A cactoid may be considered as a
standard multigraph if we add a special vertex and we replace each pointer by an edge which connects the special vertex
with the vertex the pointer is incident to.

Consider now any arbitrary but fixed orientation σ of Ĝ. Call it standard orientation. We will now define variables
xα(e) for each e ∈ Ê, which take values from {0, 1} in each possible orientation α of Ĝ. The values are defined with
reference to the standard orientation σ. So, take any arbitrary orientation α of Ĝ. For each e ∈ Ê, xα(e) = 1 if e has the
same direction in α and σ, and 0 otherwise. Note that xσ(e) = 1 for all e ∈ Ê.

We now continue with a lemma that estimates the probability that a random orientation is a 2-orientation in a 3-regular
cactoid Ĝ. Consider two vertices u and v called the two sisters with incident pointers πu and πv . Assume that in the standard
orientation σ, πu and πv point away from u and v, respectively. Denote P �G(i, j) the probability that a random orientation
α with xα(u) = i and xα(v) = j, where i, j ∈ {0, 1}, is a 2-orientation. Clearly, by our assumption on the standard
orientation σ, P �G(1, 1) is not smaller than each of P �G(0, 0), P �G(0, 1) and P �G(1, 0). However, we prove that P �G(1, 1) is
upper bounded by their sum.

Lemma 2 (Two Sisters Lemma). For any 3-regular cactoid Ĝ = 〈V, Ê〉 and any two sisters u, v ∈ V , it holds that
P �G(0, 0) + P �G(0, 1) + P �G(1, 0) ≥ P �G(1, 1).

Proof. Denote b1, b2 and b3, b4 the other edges or pointers incident to the two sisters u and v, respectively. Define the
standard orientation σ so that these edges or pointers point towards u or v, respectively. Denote Ĝ′ the cactoid obtained
from Ĝ by deleting the two sisters u and v and their pointers πu and πv . Define P�

G′(x1, x2, x3, x4) the probability that a

random orientation α of the cactoid Ĝ′ with xα(bi) = xi for 1 ≤ i ≤ 4 is a 2-orientation. Then,

P �G(1, 1) =
1

16

∑

x1,x2,x3,x4∈{0,1}

P �

G′(x1, x2, x3, x4) , P �G(0, 0) =
1

16

∑

x1·x2=0,x3·x4=0

P �

G′(x1, x2, x3, x4) ,

P �G(0, 1) =
1

16

∑

x1,x2∈{0,1},x3·x4=0

P �

G′(x1, x2, x3, x4), and P �G(1, 0) =
1

16

∑

x1·x2=0,x3,x4∈{0,1}

P �

G′(x1, x2, x3, x4) .
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Set now D = 16 ·
(
P �G(0, 0) + P �G(0, 1) + P �G(1, 0) − P �G(1, 1)

)
. It suffices to prove that D ≥ 0. Clearly,

D = 2
∑

x1·x2=0,x3·x4=0

P �

G′(x1, x2, x3, x4) − P (1, 1, 1, 1) .

Use now the cactoid Ĝ′ to define the probabilities Q(i, j) and R(i, j) where i, j ∈ {0, 1} as follows: Q(i, j) is the
probability that a random orientation α of the cactoid Ĝ′ with xα(b1) = i and xα(b2) = j is a 2-orientation; R(i, j) is the
probability that a random orientation α of the cactoid Ĝ′ with xα(b3) = i and xα(b4) = j is a 2-orientation. Clearly,

Q �

G′(i, j) =
∑

x3,x4∈{0,1}

P �

G′(i, j, x3, x4) and R �

G′(i, j) =
∑

x1,x2∈{0,1}

P �

G′(x1, x2, i, j) .

We proceed by induction on the number of vertices of Ĝ. So, it suffices to assume the claim for the cactoidĜ′ and prove
the claim for the cactoid Ĝ. Assume inductively that Q �

G′(0, 0) + Q �

G′(0, 1) + Q �

G′(1, 0) ≥ Q �

G′(1, 1) and R �

G′(0, 0) +

R �

G′(0, 1) + R �

G′(1, 0) ≥ R �

G′(1, 1). These inductive assumptions and the definitions of Q�

G′ and R �

G′ imply that

∑

x3,x4∈{0,1}
x1·x2=0

P �

G′(x1, x2, x3, x4) ≥
∑

x3,x4∈{0,1}

P �

G′(1, 1, x3, x4) ,

∑

x1,x2∈{0,1}
x3·x4=0

P �

G′(x1, x2, x3, x4) ≥
∑

x1,x2∈{0,1}

P �

G′(x1, x2, 1, 1) .

From the first inequality we obtain,
∑

x3·x4=0

x1·x2=0

P �

G′(x1, x2, x3, x4) ≥
∑

x3,x4∈{0,1}

P �

G′(1, 1, x3, x4) −
∑

x1·x2=0

P �

G′(x1, x2, 1, 1) .

From the second inequality we get,
∑

x1·x2=0

x3·x4=0

P �

G′(x1, x2, x3, x4) ≥
∑

x1,x2∈{0,1}

P �

G′(x1, x21, 1) −
∑

x3·x4=0

P �

G′(1, 1, x3, x4) .

Adding up the last two inequalities yields that 2
∑

x1·x2=0

x3·x4=0

P �

G′(x1, x2, x3, x4) ≥ 2P �

G′(1, 1, 1, 1), which implies D ≥ 0,

and the claim follows. ut

Orientations and Social Cost. In this section, we prove a graph-theoretic result, namely that the regular parallel links
graph minimizes the number of 3-orientations among all 3-regular graphs with the same number of vertices.

Theorem 2. For every 3-regular graph G with n vertices it holds that |3-or(G)| ≥ |3-or(G‖(n))|.

Proof. In order to prove the claim, we start from the graph G0 = G = (V, E0) and iteratively define graphs Gi = (V, Ei),
1 ≤ i ≤ r, for some r ≤ n, in a way that Gr equals G‖(n) and |3-or(Gi)| ≥ |3-or(Gi+1)| holds for all 1 ≤ i < r.

Note that in each 3-regular graph, each connected component is either isomorphic to a necklace or it contains a path of
length 3 connecting four different vertices, such that only the middle edge of this path can be a parallel edge. If in Gi all
connected components are necklaces, than Gi is equal to G‖(n), otherwise some connected component of Gi contains a
path c, a, b, d with 4 different vertices a, b, c, d. In the latter case, construct a new graph Gi+1 = (V, Ei+1) by deleting the
edges {a, c}, {b, d} from Ei and adding the edges {a, b}, {c, d} to the graph as described in the following paragraph.

e 4

e 5

e 6

e 7

e 8

e 9

e 1

e 2

e 3
e 5

e 1 e 2

e 4

e 3

e 6

e 7

e 8

e 9

iG i+1G

b

a c

db

a

d

c

Fig. 1. Constructing the graph Gi+1 from Gi.

As illustrated in Figure 1, the edges incident to vertices a, b, c, d are numbered by some j, where 1 ≤ j ≤ 9. In this
figure, all the edges are different. This does not necessarily have to be the case. It may happen that e4 = e5 resulting in
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two parallel edges between a and b in Gi and three parallel edges between a and b in Gi+1. It may also happen that e6 or
e7 is equal to e8 or e9. It is not possible that e6 or e7 is equal to e2 (or that e8 or e9 is equal to e3) since we assumed that
in the path c, a, b, d only the middle edge may be a parallel edge. It may be also possible that e4 is equal to e8 or e9, and
that e5 is equal to e6 or e7. Note also that in each iteration step, the number of single edges is decreased by at least 1. So
the number of iteration steps is bounded by n.

First, we will show that |3-or(Gi)| ≥ |3-or(Gi+1)| holds if all the edges e1, . . . , e9 are different. We will consider the
more general case in which some of the ej’s are equal at the end of the proof. To make the notation simpler, we set i = 1,
i.e., we consider the graphs G1 and G2. Note that there is a one-to-one correspondence between edges in G1 and edges in
G2. This implies that any arbitrary orientation in G1 can be interpreted as an orientation in G2 and vice versa. Take the
standard orientation of G1 to be the one consistent with the arrows in Figure 2. The interpretation of this orientation for G1

yields the standard orientation for G2 (also shown in Figure 2).

e 4

e 5

e 6

e 7

e 8

e 9

e 1

e 2

e 3
e 5

e 1 e 2

e 4

e 3

e 6

e 7

e 8

e 9
b

a c

db

a

d

c

GG 1 2

Fig. 2. The standard orientations in G1 and G2.

We will prove our claim by defining an injective mapping F : 3-or(G2) → 3-or(G1). We want to use the identity
mapping as far as possible. We set C2 = {α ; α ∈ 3-or(G2) , α /∈ 3-or(G1)} and C1 = {α ; α ∈ 3-or(G1) , α /∈
3-or(G2)}, and we will define F such that F (α) = α for α ∈ 3-or(G2) \ C2 and that F : C2 → C1 is injective. Note that
a mapping F : 3-or(G2) → 3-or(G1) defined this way is injective, since if β ∈ C1, then β /∈ 3-or(G2) and therefore β is
not an image when using the identity function.
Let α be an arbitrary orientation. Note that all vertices u /∈ {a, b, c, d} have the same makespan in G1 and in G2 with
respect to α. We identify first the class C2 and consider the vertices a, b, c, d. We observe:

a has makespan 3 in G2 ⇒ x1 = x2 = x4 = 1

⇒ a has makespan 3 in G1

d has makespan 3 in G2 ⇒ x3 = 0, x8 = x9 = 1

⇒ d has makespan 3 in G1

b has makespan 3 in G2 ⇒ x1 = x2 = 0 , x5 = 1

x3 = 1 ⇒ b has makespan 3 in G1

x3 = 0 , x8 = x9 = 1 ⇒ d has makespan 3 in G1

x6 = x7 = 1 ⇒ c has makespan 3 in G1

c has makespan 3 in G2 ⇒ x3 = x6 = x7 = 1

x2 = 0 ⇒ c has makespan 3 in G1

x1 = 0 ∧ x5 = 1 ⇒ b has makespan 3 in G1

x2 = 1 ∧ x1 = x4 = 1 ⇒ a has makespan 3 in G1

Collecting this characterization, we construct the class C2 as

C2 = {α /∈ 3-or(G1) ; x1 = x2 = x3 = 0 ∧ x5 = 1 ∧ x6 · x7 = x8 · x9 = 0}

∪ {α /∈ 3-or(G1) ; x2 = x3 = x6 = x7 = 1 ∧ x1 · x4 = 0 ∧ (x1 = 1 ∨ x5 = 0)} .

In a similar way, we construct the class C1 as

C1 = {α /∈ 3-or(G2) ; x1 = 0 ∧ x2 = x3 = x5 = 1 ∧ x6 · x7 = 0}

∪ {α /∈ 3-or(G2) ; x2 = x3 = 0 ∧ x6 = x7 = 1 ∧ x8 · x9 = 0 ∧ (x1 = 1 ∨ x5 = 0)} .

Now, to define F , we consider four cases about orientations α ∈ C2:

(1) Consider α ∈ C2 with
x2 = x3 = x6 = x7 = 1 ∧ x1 · x4 = 0 ∧ x8 · x9 = 0 ∧ (x1 = 1 ∨ x5 = 0).
Set F (x1, 1, 1, x4, x5, 1, 1, x8, x9, . . . ) = (x1, 0, 0, x4, x5, 1, 1, x8, x9, . . . ).
Note that vertices from {a, b, c, d} have the same connections to vertices outside {a, b, c, d}; therefore, α /∈ 3-or(G1)

implies that F (α) /∈ 3-or(G2). This implies that F (α) ∈ C1.
(2) Consider α ∈ C2 with x1 = x2 = x3 = 0 ∧ x5 = 1 ∧ x6 · x7 = 0 ∧ x8 · x9 = 0.

Set F (0, 0, 0, x4, 1, x6, x7, x8, x9, . . . ) = (0, 1, 1, x4, 1, x6, x7, x8, x9, . . . ).
In a way similar to case (1), we conclude that F (α) ∈ C1.
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Fig. 3. The mapping F .

After these two cases, any orientation α ∈ H2 with

H2 = {α ∈ C2 | x2 = x3 = x6 = x7 = 1 ∧ x1 · x4 = 0 ∧ x8 = x9 = 1 ∧ (x1 = 1 ∨ x5 = 0)}

has not been mapped by F , and orientations β ∈ H1 with

H1 = {β ∈ C1 | x2 = x3 = 0 ∧ x6 = x7 = 1 ∧ x1 = x4 = 1 ∧ x8 · x9 = 0}

∪ {β ∈ C1 | x1 = 0 , x2 = x3 = x5 = 1 ∧ x6 · x7 = 0 ∧ x8 = x9 = 1}

are not images under F . We continue with these orientations.

(3) Set

H21 = {α ∈ C2 ; x2 = x3 = x6 = x7 = x8 = x9 = 1 ∧ x1 = 1 ∧ x4 = 0}

H11 = {β ∈ C1 ; x2 = x3 = 0 ∧ x1 = x4 = x6 = x7 = 1 ∧ x8 · x9 = 0}

We will show that |H21| ≤ |H11| holds.
Consider the cactoids T21 and T11 obtained by omitting the vertices a, b, c, d from H21 and H11, respectively. T21

and T11 consist of edges and 6 pointers ej , 4 ≤ j ≤ 9. Fixing the directions of the pointers in the same way as in
the definitions of H21 and H11, respectively, the number of 2-orientations of T21 is equal to |H21| and the number of
2-orientations of T11 is equal to |H11|. See Figure 4 for an illustration.

e 4

e 5

e 6

e 7

e 8

e 9
e 5

e 4
e 6

e 7

e 8

e 9

e 1 e 2 e 3 e 1

e 2

e 3

H11

b

a c

db

a

d

c

H21

Fig. 4. Orientations from the sets H21 and H11.

The pointers e6 and e7 have the same directions in T21 and T11 and e5 has no specified direction in both cases. Edge e4
has different directions in T21 and T11. Directing edge e4 in T21 towards vertex a would lead to an increased number
of 2-orientations since the other vertex incident to e4 has in this case makespan 2 with a larger probability. Let T̃21 be
the cactoid obtained from T21 by directing edge e4 towards a. Then T̃21 and T11 differ only in the directions given to
edges e8 and e9.
Let P (i, j) be the probability of a 2-orientation in G2 if x8 = i and x9 = j. Set m = 3

2n. Then, |H11|
2m−3 = P (0, 0) +

P (0, 1) + P (1, 0) ≥ P (1, 1) ≥ |H21|
2m−3 , because of Lemma 2. It follows that |H21| ≤ |H11|.

(4) To finish the first part of the proof, set

H22 = {β ∈ C2; x2 = x3 = x6 = x7 = x8 = x9 = 1 ∧ x1 = x5 = 0}

H12 = {β ∈ C1; x1 = 0 ∧ x2 = x3 = x5 = x8 = x9 = 1 ∧ x6 · x7 = 0}

See Figure 5 below for an illustration. In the same way as in case (3), we show that |H22| ≤ |H12|.

Since H2 = H21 ∪ H22 and H1 = H11 ∪ H12, there exists an injective mapping

F : 3-or(G2) → 3-or(G1)

in the case that all edges e4, . . . , e9 are different.
Now we consider the case that some of these edges are equal. If ei = ej then in each orientation α the variables xi and

xj get opposite values. Recall that the construction and proof of injectivity of the mapping F , which we described above,
was done in 3 steps:
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Fig. 5. Orientations from the sets H22 and H12.

(i) We defined F (α) = α for all α ∈ 3-or(G2) \ C2

(ii) In cases (1) and (2) for some well defined α = (x1, . . . , x9, . . . ), the value F (α) is obtained by negating x2 and x3

and leaving the other directions unchanged.
(iii) |H2| ≤ |H1| is shown for the remaining cases.

Steps (i) and (ii) are not influenced by setting xi = x̄j for some i, j ∈ {4, . . . , 9}, i 6= j. So it remains to consider step
(iii). If ei = ej for i ∈ {6, 7}, j ∈ {8, 9}, then xi = x̄j holds and this implies that H2 = ∅, since for all α ∈ H2 it holds
x6 = x7 = x8 = x9 = 1. Clearly, this implies |H2| ≤ |H1|.

So we can assume now that ei 6= ej for i ∈ {6, 7}, j ∈ {8, 9} and we consider the case e4 = e5. We will show first that
|H21| ≤ |H11| holds also in this case. Consider the cactoids T21 and T11 obtained by deleting the vertices a, b, c, d from
H21 and H11. Since edge e4 = e5 connects vertices a and b, it is also deleted when the cactoids are formed. Each of the
cactoids T11 and T21 has now only the 4 pointers ej , 6 ≤ j ≤ 9. A simple inspection of the proof given above shows that
|H21| ≤ |H11| holds also in this case. Furthermore, |H22| ≤ |H21| can be shown in the same way. The cases e4 = e8 and
e5 = e6 can be handled in a very similar way. This completes the proof of the claim. ut

Our main result follows now as an immediate consequence of Theorem 2.

Corollary 1. For a 3-regular graph G with n vertices, SC(G, F̃) ≥ SC(G‖(n), F̃) = 3 −
(

3
4

)n/2
.

We can also show that equality does not hold in Corollary 1.

Example 1. There is a 3-regular graph for which the Social Cost of the standard fully mixed Nash equilibrium is larger
than for the corresponding parallel links graph.

4 Coordination Ratio

In this section, we present a bound on the Coordination Ratio for pure Nash equilibria.

Theorem 3. Restricted to pure Nash equilibria, CR = Θ
(

log n
log log n

)
.

Proof. Upper bound: Since our model is a special case of the restricted parallel links model, the upper bound O
(

log n
log log n

)

in [8] also holds for our model.
Lower bound: Let G be the complete tree of height k, where each vertex in layer l, 0 ≤ l ≤ k has k− l children. Denote by
kl = k(k−1)·. . .·(k−l) the lth falling factorial of k. Then, the number of vertices is n =

∑
0≤l≤k kl < (k+1)! = Γ (k+2).

This implies k > Γ−1(n) − 2.

(1.) Denote by L1 the pure assignment in which all users are assigned toward the root. Clearly, the Individual Cost of a
user assigned to a vertex in layer l is k − l. Moreover, such a user can not improve by moving to its vertex in layer
(l + 1). Thus, L1 is a pure Nash equilibrium with Social Cost k.

(2.) Denote by L2 the pure assignment in which all users are assigned toward the leaves. Clearly, the Individual Cost of all
users is 1. Thus, the Social Cost of L2 is 1.

It follows that maxG,L
SC(G,L)
OPT(G) ≥ SC(G,L1)

SC(G,L2)
= k > Γ−1(n) − 2 = Ω

(
log n

log log n

)
, as needed. ut

We also observe:

Observation 1. Restricted to pure Nash equilibria, for any interaction graph G, CRG ≤ ∆G, and this bound is tight.
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5 The Fully Mixed Nash Equilibrium

In this section, we study the fully mixed Nash equilibrium. For a graph G = (V, E), for each edge jk ∈ E, denote jk the
user corresponding to the edge jk. Denote p̂jk and p̂kj the probabilities (according to P) that user jk chooses machines j

and k, respectively. For each machine j ∈ V , the expected load of machine j excluding a set of edges Ẽ, denoted πP(j)\Ẽ,
is the sum

∑
kj∈E\

�

E p̂kj . As a useful combinatorial tool for the analysis of our counterexamples, we prove:

Lemma 3 (The 4-Cycle Lemma). Take any 4-cycle C4 in a graph G, and any two vertices u, v ∈ C4 that are non-adjacent
in C4. Consider a Nash equilibrium P for G. Then, πP (u) \ C4 = πP (v) \ C4.

Non-Existence Results. We first observe:

Counterexample 1. There is no fully mixed Nash equilibrium for trees and meshes.

We remark that the crucial property of trees that was used in the proof of Counterexample 1 is that each tree contains
at least one leaf. Thus, Counterexample 1 actually applies to the more general class of graphs with no vertex of degree 1.
We continue to prove:

Counterexample 2. For each graph in Figure 1, there is no fully mixed Nash equilibrium.

Our six counterexample graphs suggest that the existence of 4-cycles across the “boundary” of a graph or 1-connectivity
may be crucial factors that disallow the existence of fully mixed Nash equilibria. Of course, this remains yet to be proven.

Uniqueness and Dimension Results. For Complete Bipartite Graphs, we prove:

Theorem 4. Consider the complete bipartite graph Kr,s, where s ≥ r ≥ 2 and s ≥ 3. Then, the fully mixed Nash
equilibrium F for Kr,s exists uniquely if and only if r > 2. Moreover, in case r = 2, the fully mixed Nash dimension of
Kr,s is s − 1.

Hypercube Graphs. Observe first that, in general, any point in (0, 1)r is mapped to a fully mixed Nash equilibrium with
equal Nash probabilities on all edges of the same dimension (and “pointing” to the same direction). This implies:

Observation 2. Consider the hypercube Hr, for any r ≥ 2. Then, the fully mixed Nash dimension of Hr is at least r.

To show that r is also an upper bound, we need to prove that no other fully mixed Nash equilibria exist. We manage to
do this only for r ∈ {2, 3}.

Theorem 5. Consider the hypercube Hr, for r ∈ {2, 3}. Then, the fully mixed Nash dimension is r.

Worst-Case Equilibria. We present two counterexamples to show that a fully mixed Nash equilibrium is not necessarily
the worst-case Nash equilibrium, but it can be.

Counterexample 3. There is an interaction graph for which no fully mixed Nash equilibrium has worst Social Cost.
Counterexample 4. There is an interaction graph for which there exists a fully mixed Nash equilibrium with worst Social
Cost.

6 Epilogue

We introduced a simple graph-theoretic model, called interaction graphs, to address the effect of structured and sparse
interactions among users and machines in complex multischeduling systems. Within our new model, we studied the impact
of selfish behavior of the users reaching a stable state of the system modeled as a Nash equilibrium [20]. In this setting,
we investigated the amount of performance loss under various topological assumptions on interaction graphs. As our main
result, we determined that the simplest parallel links graph is the best among all 3-regular graphs with respect to expected
makespan in the standard fully mixed Nash equilibrium. The proof of our main result has required a lot of non-standard
structural graph theory to be proven.

Our work presents a new genre of mathematical problems in relation to the model of interaction graphs that remain
tantalizingly open. We conclude by listing a few of them here:

– Extend our analysis on the optimality of the parallel links graph to all d-regular graphs, for any fixed d > 3.
– Is the standard fully mixed Nash equilibrium essential for the optimality of the parallel links graph? Or does the

optimality hold for all fully mixed Nash equilibria?
– Characterize in graph-theoretic terms the graphs for which a fully mixed Nash equilibrium exists, and those for which

a fully mixed Nash equilibrium is (respectively, is not) the worst Nash equilibrium.
– Is Θ( log n

log log n ) the right bound on Coordination Ratio for all mixed Nash equilibria? Or is it Θ( log n
log log log n )? We know

it is Ω( log n
log log n ) and O( log n

log log log n ).
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– Extend our model to encompass the more realistic assumptions of non-unit weights for the users and capacities for the
links (cf. [15]), or the capability of users to place their jobs on more then two machines (that is, the interaction graph
becomes a hypergraph). It will be very interesting to study the impact of these additional dimensions.

In conclusion, our work deals with a currently trendy topic, namely the (impact of) selfish behavior of users, in a simple
graph-theoretic model for restricted scheduling, namely the interaction graphs. Numerous open problems and issues re-
main, and we believe that our work will stimulate further research on the topic.

Acknowledgments: We thank Paul Spirakis and Karsten Tiemann for helpful discussions on the topic of our work.
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Appendix

Fig. 6. Six counterexample graphs

Proof of Lemma 1

Consider an independent set I = {v1, . . . , vr} of G. For each j, 1 ≤ j ≤ r, denote Ej the set of edges incident to j.
Clearly, |Ej | = d for all j. Moreover, for all indices j and h, j 6= h, Ej and Eh are disjoint since I is an independent set.
Choose any arbitrary vertex v ∈ I . The probability that v has makespan ≤ d − 1 is 1 − 1

2d . Since all sets Ej , 1 ≤ j ≤ r,

are disjoint, the probability that all vertices from I have makespan ≤ d − 1 is
(
1 − 1

2d

)|I|
. The probability that all vertices

from V have makespan ≤ d − 1 is no larger, and the claim follows. ut

Proof of Corollary 1

For each orientation of a 3-regular graph, the makespan is at least 2. So SC(G, F̃) = 2 ·q3(G)+3(1−q3(G)) = 3−q3(G).

Because of Theorem 3.3 q3(G) ≤ q3(G‖(n)) =
(

3
4

)n/2
, as needed. ut

Example 1

Let G be the complete graph with 4 vertices and G′ be the corresponding parallel links graph. Denote F̃ and F̃
′ the standard

fully mixed Nash equilibria for the graph G and G′, respectively. Each graph has exactly 6 edges, so there are 26 = 64

possible assignments of the users. Since we consider the standard fully mixed Nash equilibrium, each of these assignments
is equiprobable. Enumerating all possible assignments and counting the number of 3-orientations (the ones with makespan
3) we get 32 and 28 for G and G′, respectively. Thus, SC(G, F̃) > SC(G′, F̃′). ut

i



Proof of the 4-Cycle Lemma

Denote C4 = u, x, v, y, u. We will write down the Nash equations for users ux, xv, vy and yu. These are

(i) πP (u) \ C4 + p̂yu = πP (x) \ C4 + p̂vx,
(ii) πP (x) \ C4 + p̂ux = πP (v) \ C4 + p̂yv,

(iii) πP (y) \ C4 + p̂uy = πP (v) \ C4 + p̂xv,
(iv) πP (u) \ C4 + p̂xu = πP (y) \ C4 + p̂vy.

Adding all these equations and using the fact that for any user ab we have p̂ab = 1 − p̂ba, it follows that

2πP (u) \ C4 + πP (x) \ C4 + πP (y) \ C4 = 2πP (v) \ C4 + πP (x) \ C4 + πP (y) \ C4 .

This implies that πP (u) \ C4 = πP (v) \ C4, as needed. ut

Counterexample 1

Assume, by way of contradiction, that a fully mixed Nash equilibrium F exists for a tree T . Take any edge uv for a leaf v

in T . The Nash equation for user uv is πP (u) − f̂vu = πP (v) − f̂uv or πP (u)− f̂vu = 0 (since v is a leaf). Since u is not
a leaf, πP (u) − f̂vu > 0. A contradiction. The non-existence of fully mixed Nash equilibria for meshes is an immediate
consequence of the 4-Cycle Lemma. ut

Counterexample 2

Consider the top left graph in Figure 6. Assume, by way of contradiction, that there is a fully mixed Nash equilibrium for
it. Name the machines x, y, z, z′, x′, y′ from top to bottom. The Nash equations become

(i) f̂zx = f̂zy

(ii) f̂yx = f̂yz + f̂z′z

(iii) f̂xy = f̂xz + f̂z′z

(iv) f̂xz + f̂yz = f̂x′z′ + f̂y′z′

(v) f̂y′x′ = f̂y′z′ + f̂zz′

(vi) f̂x′y′ = f̂x′z′ + f̂zz′

(vii) f̂z′x′ = f̂z′y′

Recall, that for any user ab we have f̂ab = 1 − f̂ba. It follows from (ii) and (iii) with (i) that f̂xy = 1
2 . By symmetry,

f̂x′y′ = 1
2 . Now adding (ii) and (v) yields f̂yx + f̂y′x′ = f̂yz + f̂y′z′ +1 which implies that f̂yz + f̂y′z′ = 0, a contradiction

to the assumption that there is a fully mixed Nash equilibrium.

The 4-Cycle Lemma immediately implies that there is no fully mixed Nash equilibrium for the three graphs at the
bottom. The non-existence of the fully mixed Nash equilibrium for the two remaining graphs follows with arguments
similar to those we used for the top left graph. ut

Proof of Theorem 4

For any integer k ≥ 2, denote Ik×k and Jk×k the identity matrix and the complementary identity matrix, respectively; that
is,

Ik×k =




1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1


 and Jk×k =




0 1 . . . 1 1

1 0 . . . 1 1
...

...
. . .

...
...

1 1 . . . 1 0


 .

Recall that s ≥ r ≥ 2 and s ≥ 3. We show in (1.) that there exists a unique fully mixed Nash equilibrium if and only if
r > 2. In (2.), we prove that the fully mixed dimension is s − 1 if r = 2.
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(1.) Define vectors f1, f2, . . . , fr so that for each index l, 1 ≤ l ≤ r, fl contains the s probabilities for each of s users
attached to machine l in the right bipartition to assign its load to machine l. So, each vector fl corresponds to a vertex
in the left partite set (of size r); each such vector has s components, each corresponding to a vertex in the right partite
set. It is immediate to derive that the fully mixed Nash equations become




Js×s Is×s . . . Is×s Is×s

Is×s Js×s . . . Is×s Is×s

...
...

. . .
...

...
Is×s Is×s . . . Is×s Js×s


 ·




f1

f2

...
fr


 = (r − 1)




1

1
...
1


 .

Take any two adjacent block rows in the Nash equations. For example, take the first block row and the second block
row; these are Js×s · f1 + f2 + . . . + fr = (r − 1)1s×1 and f1 + Js×s · f2 + . . . + fr = (r − 1)1s×1. By subtraction,
it follows that Js×s · (f1 − f2) = f1 − f2. Since 1 is not an eigenvalue of Js×s, it follows that f1 = f2. In this
way, it is proved that f1 = f2 = . . . = fr; set this common value to f . Then, each block row may be written as
Js×s · f + (r − 1)f = (r − 1)1s×1, or




r − 1 1 . . . 1 1

1 r − 1 . . . 1 1
...

...
. . .

...
...

1 1 . . . 1 r − 1


 · f = (r − 1)1s×1 .

This linear system has the solution r−1
r+s−2 1s×1, which is unique if and only if the system matrix is non-singular; thus,

the fully mixed Nash equilibrium F exists uniquely if and only if r > 2, as needed.
(2.) Assume now that r = 2. Similar to the previous case (by swapping r and s), we can express the Nash equations with

help of the matrix

M =




J2×2 I2×2 I2×2 · · · I2×2 I2×2

I2×2 J2×2 I2×2 · · · I2×2 I2×2

...
. . .

...
...

. . .
...

I2×2 I2×2 I2×2 · · · J2×2 I2×2

I2×2 I2×2 I2×2 · · · I2×2 J2×2




.

We now proceed by deriving the dimension of the solution space with help of matrix manipulation. From i = 2 to s,
subtract the ith row block from the (i − 1)th row block. This yields

M ′ =




J2×2 − I2×2 I2×2 − J2×2 0 · · · 0 0

0 J2×2 − I2×2 I2×2 − J2×2 · · · 0 0
...

. . .
. . .

...
...

. . .
. . .

...
0 0 0 · · · J2×2 − I2×2 I2×2 − J2×2

I2×2 I2×2 I2×2 · · · I2×2 J2×2




.

Then, from i = 1 to s − 1, add the ith row block of M ′ to the (i + 1)the column block. This yields

M ′′ =




J2×2 − I2×2 0 0 · · · 0 0

0 J2×2 − I2×2 0 · · · 0 0
...

. . .
...

...
. . .

...
0 0 0 · · · J2×2 − I2×2 0

I2×2 2I2×2 3I2×2 · · · (s − 1)I2×2 J2×2 + (s − 1)I2×2




.

Since M ′′ is a lower triangular matrix, it suffices to derive the rank of the matrices on the diagonal. On the one hand,
the determinant of J2×2 − I2×2 is

det(J2×2 − I2×2) =

∣∣∣∣
(
−1 1

1 −1

)∣∣∣∣ = 0.
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Thus, the rank of J2×2 − I2×2 is 1. On the other hand, the determinant of J2×2 + (s − 1)I2×2 is

det(J2×2 + (s − 1)I2×2) =

∣∣∣∣
(

s − 1 1

1 s − 1

)∣∣∣∣ = (s − 1)2 − 1
s≥3
> 0.

Thus, the rank of J2×2 + (s − 1)I2×2 is 2. Combining these results, we get that the rank of M ′′ is s + 1. This implies
that the kernel has dimension 2s − (s + 1) = s − 1, proving the claim. ut

Proof of Theorem 5

The lower bounds follow from Observation 2. For r = 2, note that H2 = C4 = u, x, v, y, u, the 4-cycle. The Nash
equations for users ux and xv are f̂yu = f̂vx and f̂ux = f̂yv, which implies that dimH2

(F) ≤ 2. Consider now the
case r = 3, where dimH3

(F) ≤ 3·8
2 = 12. Using the Nash equations and the 4-Cycle Lemma, we prove that the Nash

probabilities on edges of the same dimension (and “pointing” to the same direction) are necessarily equal, which implies
that dimH3

(F) ≤ 3. ut

Counterexample 3

Let G be the 4-cycle s, t, u, v, s. For G there exists a pure Nash equilibrium with social cost 2: user st and tu are assigned
to machine t, user uv is assigned to machine u, and user vs is assigned to machine s. Since the social cost of any pure
assignment is at most 2 and there exist pure assignments with social cost 1 which contribute to the social cost of any fully
mixed Nash equilibrium, the social cost of any fully mixed Nash equilibrium is strictly less than 2, proving the claim. ut

Counterexample 4

Let g be the 3-cycle. For G there are two symmetric pure Nash equilibria where there is exactly one user assigned to each
machine. Let L be such a pure Nash equilibria. It is, SC(G,L) = 1. Clearly, there is only one further Nash equilibrium
for G, which is the standard fully mixed Nash equilibrium F. In F each of the three users chooses each of its two possible
links with probability 1

2 . This implies SC(G,F) = 1.75 > SC(G,L). ut
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