Abstract
For an ID-based key exchange (KE) protocol, KGS forward secrecy is about the protection of previously established session keys after the master secret key of the Key Generation Server (KGS) is compromised. This is the strongest notion of forward secrecy that one can provide for an ID-based KE protocol. Among all the comparable protocols, there are only a few of them providing this level of forward secrecy and all of these protocols require expensive bilinear pairing operations and map-to-point hash operations that may not be suitable for implementation on low-power devices such as sensors. In this paper, we propose a new ID-based KE protocol which does not need any pairing or map-to-point hash operation. It also supports the strongest KGS forward secrecy. On its performance, we show that it is faster than previously proposed protocols in this category. Our protocol is signature-based in which the signature scheme is a variant of a scheme proposed by Bellare et al. in Eurocrypt 2004. We show that the variant we proposed is secure and also requires either less storage space or runtime computation than the original scheme.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barreto, P., Kim, H., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)
Barreto, P., Lynn, B., Scott, M.: On the selection of pairing-friendly groups. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 17–25. Springer, Heidelberg (2004)
Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and analysis of authentication and key exchange protocols. In: Proc. 30th ACM Symp. on Theory of Computing, pp. 419–428. ACM, New York (1998)
Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004), http://www-cse.ucsd.edu/users/mihir
Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: First ACM Conference on Computer and Communications Security, Fairfax, pp. 62–73. ACM, New York (1993)
Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)
Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)
Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment. Springer, Heidelberg (2003)
Burmester, M.: On the risk of opening distributed keys. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 308–317. Springer, Heidelberg (1994)
Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001), http://eprint.iacr.org/2001/040/
Chen, L., Kudla, C.: Identity based authenticated key agreement protocols from pairings. Cryptology ePrint Archive, Report 2002/184 (2002), http://eprint.iacr.org/
Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991)
Girault, M., Paillès, J.-C.: An identity-based scheme providing zero-knowledge authentication and authenticated key exchange. In: European Symposium on Research in Computer Security, October 1990, pp. 173–184. AFCET (1990)
Günther, C.: An identity-based key exchange protocol. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer, Heidelberg (1990)
McCullagh, N., Barreto, P.: A new two-party identity-based authenticated key agreement. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 262–274. Springer, Heidelberg (2005)
Okamoto, E.: Key distribution systems based on identification information. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 194–202. Springer, Heidelberg (1988)
Smart, N.: Identity-based authenticated key agreement protocol based on Weil pairing. IEE Electronics Letters 38(13), 630–632 (2002)
Yi, X.: Efficient ID-based key agreement from Weil pairing. IEE Electronics Letters 39(2), 206–208 (2003)
Zhu, R., Yang, G., Wong, D.: An efficient identity-based key exchange protocol with KGS forward secrecy for low-power devices, full paper (2005), http://www.cs.cityu.edu.hk/~duncan/papers/05zhuetal_idke.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhu, R.W., Yang, G., Wong, D.S. (2005). An Efficient Identity-Based Key Exchange Protocol with KGS Forward Secrecy for Low-Power Devices. In: Deng, X., Ye, Y. (eds) Internet and Network Economics. WINE 2005. Lecture Notes in Computer Science, vol 3828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11600930_50
Download citation
DOI: https://doi.org/10.1007/11600930_50
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30900-0
Online ISBN: 978-3-540-32293-1
eBook Packages: Computer ScienceComputer Science (R0)