N

HAL

open science

N-ary Queries by Tree Automata

Joachim Niehren, Laurent Planque, Jean-Marc Talbot, Sophie Tison

» To cite this version:

Joachim Niehren, Laurent Planque, Jean-Marc Talbot, Sophie Tison. N-ary Queries by Tree Au-
tomata. 10th International Symposium on Database Programming Languages, 2005, Trondheim,

Norway. pp.217-231. inria-00536522

HAL 1d: inria-00536522
https://inria.hal.science/inria-00536522
Submitted on 16 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00536522
https://hal.archives-ouvertes.fr

N-ary Queries by Tree Automata

Joachim Niehren Laurent Planque Jean-Marc Talbot Sophk@nTi

INRIA Futurs, LIFL, Lille, France
www. grappa. univ-lille3.fr/nostrare

We investigaten-ary node selection queries in trees by successful runeeféau-
tomata. We show that run-baseehry queries capture MSO, contribute algorithms for
enumerating answers afary queries, and study the complexity of the problem. We
investigate the subclass of run-basedry queries by unambiguous tree automata.

Keywords: XML, databases, information extraction, logic, automatpes, pattern.

1 Introduction

Node selections the most widespread database querying problem in theextoof
XML. Beside other applications, node selection is basic MLXransformation lan-
guages (Query, XSLT, XDuce, CDuce, tree transducer, etc7[11%]) and of interest
for Web information extraction (Lixto, Squirrel, etc [1,15]).

Monadic node selection queriés trees define sets of nodes, whileary node
selection querieslefine sets ofi-tuples of nodes. Binary queries, for instance, can be
used to select all pairs of products and prices in XML or HTMhcdments created
from the database of some company. Monadic queries haaetaitr most attention so
far, in particular those specified in the W3C standéRaththat is used by XQuery and
XSLT, or similar path based query languages [IManadic Datalogyields attractive
alternatives for expressing monadic queries, in particidavisual Web information
extraction [11]. More general-ary queries have been promoted by XML programming
languages with pattern matching such as XDuce and CDucé&]1Bheir patternsor
typeswith n capture variables specify-ary node selection queries in trees.

Monadic second-order logic (MS@9 the classical language for defining regular
node selection queries in trees [21]. Every formula of MS@hwifree node variables
specifies am-ary query. MSO is highly expressive, succinct, and robusten many
wishful operations. Its usage, however, remains limited tuits high combined com-
plexity in query answeringTree automatgrovide an equally expressive alternative,
according to Thatcher and Wright's 1968 theorem [21]. Thegichthe algorithmic
complexity of MSO at the cost of lower succinctnes&ary queries are seen as lan-
guages of trees whose nodes are annotated by bit vectoragihlte, which may be
recognizable by tree automata or not.

In this paper, we investigate the more recent approach afidgfi-ary queries by
successful runs of tree automdfy 13, 18, 10, 19]. Successful runs annotate all nodes
of a tree by states. Givenselection sebf n-tuples of states, a successful run selects
all thosen-tuples of nodes that it annotates in the selection set. Wiy dhe two cases
of ranked and unranked trees. In the unranked case, edlsathiiesame representation
formalism has been proposed previously by Berlea and S&idtélledn-ary queries

4
states ={1,2,3,4,x,y,xy’,al} final = {4}

book 3

book(all*, 1,2, all*) — 3 _(all*, 4,all*) — 4
354
article ! article 2 -
/ \ / \ article(x, x’, all*) — 1 article(y,y’, all*) — 2
X x' y y' all Sx | X |y |y _(all*) — all*

Fig. 1. Pattern as tree automata; matches correspond to successful runs.

by forest grammarsin the ranked case, run-basedry queries have been proposed by
Hosoya and Pierce [13] in terms péttern automata

N-ary queries by tree pattern are most closely related tdoased queries by tree
automata [13]. This is illustrated by the example in Fig. Aeodes of the tree pattern
on the left become states of the automaton on the right. Toienade of the pattern
becomes the unique final state. The only selectirigple of automaton states is the
n-tuple of capture variables of the pattern. The rules of ttermaton express the se-
mantics of the pattern. They can be inferred compositignMiatches of the pattern
correspond to successful runs of the automaton.

In this paper, we prove the folk theorem that run-basedy queries capture MSO,
to our knowledge for the first time. We then present a detdstidnalgorithm that can
enumerate all answers of anary query by an automatoA with selection setS5 C
states(A)™ in time O(|S| = | 4| * [¢t|™). The combined complexity of run-basesdary
queries is thus in deterministic polynomial time for fixegleisizen. We also prove
that this is not the case if we do not bound the tuple size

We then investigate the querying powemsiambiguous tree automatdnambigu-
ity limits the amount of nondeterminism to at most one susftgsun per tree, which is
more permissive than imposing bottom-up or top-down detgsm. Monadic queries
by unambiguous tree automata are of particular interesjdery induction [5]. They
are known to capture the class of monadic MSO-definable emi€since they are the
IBAGs of [18]) in contrast to deterministic tree automata.

For then-ary case, however, we prove that run-based queries by ligamis au-
tomata are strictly less expressive than MSO. They captisefimite unions of Carte-
sian closed regular queries. This is the classi-@ry queries that can be defined by
disjunctions of conjunctions of MSO formulas with one freariable each. We can
compute representions of all query answers in tite = |S| = |A] |¢t|). Emptiness
is thereby decidable in polynomial time even for unboundsadet sizen. Finally, we
show that it is decidable whether an MSO defined query beltmtigt restricted class.
We reduce this problem to testing the boundedness of thedeagrambiguity of tree
automata [20].

2 MSO definable and regular queries

We develop our theory ofi-ary queries for binary treesvhich will be sufficient to
deal with unranked trees (see Section 6). This sectiorsstéttt Thatcher and Wright's
theorem [21], slightly reformulated in terms of queryingher than recognition.

Let X be a finite signature of binary function symbgland constants. A binary
treet € T, is a ground term oveE. A noder of a treet is a word in{1, 2}* that is the
relative address of some subtree starting from the root. YWe wodes(t) for the set of
nodes oft. The empty word: is the root oft. We writer - «’ for the concatenation of
the wordsr andr’. The noder - 1 of a treet is thefirst child of the noder in ¢, while
7 - 2 is itssecond childA node is deaf if it has no child, otherwise it is aimner node
We will freely identify treeg over X with labeling functionf typet : nodes(t) — X,
such that for al, f € X, t1,t; € Ty, andi - m € {1,2}* (wherei is the word 1 or 2) :

a(e) = a, f(tl,tg)(e) = f, f(thtg)(i . 7T') = tz(ﬂ') if me nodes(ti)

Definition 1. Letn € N. Ann-ary query in binary trees ovek' is a functiong that
maps treeg € T's; to sets ofu-tuples of nodes, such thet € T, : ¢(t) C nodes(¢)™.

Simple examples for monadic queries in binary trees dvarre the functiongeaf and

root that map treeg to the sets of their leaves resp. to the singlefeh The binary
query first_child relates nodesg to their first childz - 1 if it exists, while the query
next_sibl relates first childrenr - 1 to their next sibling to the right - 2. As another
example, we can query for all paifs, ') in treest such that the subtreesoén below

of m and«’ are equal in structure. This last query can indeed be exquless RAG's

[18] but cannot be defined in MSO.

In MSO, binary trees € T's; are seen aegical structureswhose domain is the set
nodes(t). Its signature consists of the binary relation symbots_child andnext_sibl
and the monadic relation symbdlsel. for all ¢ € X. These symbols are interpreted
by the corresponding node relationstof

first_child’ = {(m, 7 - 1) | 7 - 1 € nodes(t)} label’. = {7 | t(n) = ¢}
next_sibl’ = {(7-1,7-2) | 7 -1 € nodes(t)}

Let z, y, z range over an infinite set of first-order variables andver an infinite set
of monadic second-order variables. Formuasf MSO have the following abstract
syntax, where: € X

¢ == p(x) | first_child(z, y) | next_sibl(x,y) | label.(x) | =¢ | 1 A d2 | V.00 | Vp.@

A variable assignment into a treet maps first-order variables to nodes @ind second-
order variables to sets of nodesofWe define the validity of formulag in treest
under variable assignmenisin the usual Tarskian manner, and writex |= ¢ in this
case. Formulag with n free first-order variables,, ..., z,, definen-ary queries, which
satisfy for allt € T's::

Qp(ar....z) (1) = {(@(@1), s al@n)) [1,0 = 6}

Definition 2. Ann-ary query isMSO definabléf it is equal to somey,(,, ... 2,.)-

An equivalent way of defining-ary queries in MSO is by formulag with n free
second-order variablegs, ..., p,. For allt € Ts; let:

q¢(p1,-».,pn)(t) = U Oé(pl) X ... X a(pn)
t,a\:d)

Lemma 1. Ann-ary query is MSO definable iff it is equal to somg,, ... ,.)-

A tree automatonA for binary trees [9] over signatur& consists of two finite
setsfinal(A) C states(A4) and a setules(A) with elements of the fornru — p or
f(p1,p2) — p wheref € X is a binary function symbolg € X a constant, and
D, p1, P2 € states(A).

A run r of a tree automatord on a treet is @ mapping- : nodes(t) — states(A)
that associates states to nodes acording to the rules od. Equivalently, we can see
runs as trees labeled states(A) such thanodes(r) = nodes(t). A run issuccessfuf
it labels the root of the tree by a final state, if r(e) € final(A). We writeruns 4 ()
for the set of all runs ofd ont¢ andsucc_runs4(t) for the subset of successful runs. A
treet is acceptedby a tree automatod if it permits a successful run byt. Thetree
languageL(A) recognized by an automatoh is the set of trees accepted byd. A
tree language iggularif it is recognized by some tree automaton.

Queries can be viewed as tree languagédss perspective is close to that of Thatcher
and Wright, who view models oo of MSO formulas as treesannotated by bit vectors
encodingn. Sets of models become languages of annotated trees.

Let B = {0,1} be the set of Booleans. A Boolean tr@eas a binary tree whose
nodes are labeled by Booleans (here, Booleans serve bothayg function symbols
and as constants). As an auxilary notion for formalising positions of trees with their
annotations, we define products of functions with the sammeailo. The product ofn
functionsg; : C — D; is the functiong; x...*x g,, : C — Dy x ... x D,, such that

(g1 %...%xgm)(c) = (g1(c), ..., gm(c)) forallc e C

Considering trees as functions, the prodtict ... x t,,, of m trees with the same
domain (but possibly different signatures) is the tree whiabeling function is the
product of labeling functions af;, . . ., ¢,,. A languagel. of annotated trees ovér x B™
corresponds to the following-ary query:

qr.(t) ={(m1,...,m) | 361, ..., Bn, txB1%.. xBy € L, B1(m) = ... = Bp(m,) = 1}

Such languages identify queries uniquely, but conversiedysame query may be rep-
resented by many different languages.

Definition 3. Ann-ary query in trees ovek' is regulariff it is equal togy, 4) for some
tree automatord over X’ x B™.

Theorem 1. ([21]). An n-ary query in trees is MSO definable iff it is regular.

MSO formulase(ps, . . ., pn) define languages of trees ovBrx B™ representing
the querygyy, ...) Different formulas may define different languages for tame
query. Which formula or language to choose to defirary queries will turn out to be
crucial for what follows.

Givensetss” C S, we define a characteristic functiog : S — B so thaicg/ (s) <
s € §' forall s € S. Every subsef C nodes(t) defines a characteristic functien
that we identified with the Boolean trees whose labeling fioncis cp. This tree has
the same nodes asFormulasp(ps, .. ., p,) define a language of annotated trees over

the signaturel’ x B™: Ly, ,....p,) = 1t *Ca(py) * - - ¥ Ca(py) | L |E d(p1, -, Pn)}-

Lemma 2. An MSO-formula and the language of annotated trees encatlingodels
define the same queny;,, ... p,) = 9L,

opn) "

Similarly, we can defin€.y,, ,... ..,y by considering all first-order variables as sin-
gleton valued second-order variables. We call trees3; * ... x 3, € Lg(,,
canonical since each of them identifies precisely one tuplegf.,
sets3; ! (1) are singletons fot < i < n.

.....)

...,a:”)(t), i-e., all

3 Run-based queries

Boolean annotations of trees are not necessary to defineegumrtrees automata. Al-
ternatively, one can use successful runs of tree automatantotate trees by states, and
then select from these state annotations. The idea is th@hata states are properties
of nodes, which can be verified for nodes by successful runs.

An existential run-based-ary queryqjs in binary trees ovel’ is given by a tree
automatonA over X’ and a setS C states(A)™ of so calledselection tupleslt selects
all those tuples of nodds, . .., 7,) in a treet that are assigned to a selection tuple by
some successful run of ont:

qi,s(t) ={(my,...,m) | Ir € succ_runsy(t), (r(m),...,r(m)) € S}

Existential run-based-ary queries were proposed by Neven and Van den Bussche [18]
in the framework of attribute grammars (these can be seereasatitomata whose
states are vectors of attribute values). Their BAG’s cqes to our monadic case,
while their RAG’s are more expressive than audary case. Existential run-baseeary
queries in binary trees (with a first match semantics) weopgsed by Hosoya and
Pierce [13}. Seidl and Berlea [2] define run-baseéry queries for unranked trees (by
forest grammars), and present an query answering algofgéhthe binary case.

Itis known from [18] that monadic existential run-basedriggcapture the class of
monadic MSO definable queries. The analogous resultfary existential run-based
queries might be expected. It holds indeed as we will provEn@orem 2.

An example is given in Fig. 2. We consider the binary query fiedects pairs of-
leave and next-sibling-leaves, over the signatuge = {f, a, b}. We define this query
by the automatom, with states(A2) = {1, 2, *,y} that will produce successful runs

! They use successful runs implicitly when defining the semantics of tharpaautomata.
Node selection is defined by pattern variables that are kept distinct fntomata states

/\ /\

/ / \ / AN / \
a,l b,2 a,* b,* a,* b,* a,l b,2

Fig. 2. Selecting pairs ofi-leaves and next-siinnAg)LIeaveS'q3,27{([“,)}r

of the form of Figure 2. The query is representedqﬁy (1.2) . The automatom, will
assign staté to selected:i-leaves and stateto the correspondmg next-sibligeaves.
The final statey will be assigned to all common ancestors of the selectecbpaves:
final(A2) = {y}. Statex can be assigned to all other nodes. Every successful run of
the automator, will select a single pair of nodes. The following rules verihese
properties:

a—1 b—2 S x,%)—x f(1,2)—y

a—x b=k fly, %)=y f(xy)—oy

This example illustrates the trick: different selectedésare selected in different runs
so that their components cannot be mixed up.

Theorem 2. Existential run-based.-ary queries capture precisely the class of MSO-
definablen-ary queries.

Sketch of proofOn the one hand, we can easily describe successful runseoatre
tomata in MSO. Existential run-based queries are thus d#érna MSO. Let us prove
now that every regular query is equal to some existentialoased query. Led)

be a regulam-ary query for some tree automatehover X x B™. We compute an
automatonproj(A) over X' by projecting Booleans from the labels into states. Let
states(proj(A)) = states(A)xB™, final(proj(A)) = final(4) xB". The rules oproj(A)

are generated by the following schema fora@llf € X, p1,pa2,p € states(A) and
b,b;,bl,b? € Bwherel <i < n:

1y Y Ye

(ayb1,....,bn)—p € rules(A)
a—(p,b1,...,b,) € rules(proj(A))

(f,b1,..,b0)(p1,02)—q € rules(A)
f((p1,b1,...0%), (p2, b3, ..., b5))—(p, b1, ..., by) € rules(proj(A))
We define the selection sét C states(proj(A))™ by S = @1 X ... x @, such that
foralll < i <n:Q; = {(¢gb1,...,b,) € states(proj(A)) | b; = 1}. It remains to
prove thatqr4) = qf)'mj(A).8 . This follows from that for any termt x 3 * ... x 5,
over X x B™: runsyojay(t) = {r* f1 % ... ¥ Bn | 7 € runsy(t * By * ... * 3,)} and
SUCC_ruNSproj(4) (1) = {r * 01 % ... % By | 7 € succ_runs 4 (t * B1 % ... x B,) }.

Universal run-basedq-ary queriesquantify universally rather than existentially
over successful runs. Universalary queries were first introduced by Neven and Van
den Bussche [18] in the framework of attribute grammars/ensial BAGs and RAGS).

In the monadic case, they are used by Frick, Grohe, and Kdijh [1

q%.s(t) ={(m,...,m) | Vr € succrunsy(t), (r(m), ..., r(m,)) € S}

Theorem 3. Existential and universal queries have the same exprasssge

This theorem has been proved for the monadic case [18] os b&she two phase
querying answering algorithm, which fails for theary case. As we show here, the
theorem generalizes to theary case nevertheless.

Proof. We define the complement of a queryq such that for all tree¢ € Ty,
q°(t) = nodes(t)™ \ ¢(t). Existential queries are regular and thus MSO-definable, so
their complements are MSO-definable, thus regular, anddkfirable by existential
run-based queries, too (Theorems 1 and 2). Furthermoreleiigtions of existential
and universal queries are dual modulo complementationfaeevery tree automaton
A with selection tuples C states(A)", q% 5 = (A7 gates(a)m\5)

As complements of existential queries are existentiad/lib¥vs that universal queries
are existential too. Vice versa, letbe an existential query. Sg is equal thELS for

some4, S. Henceg = qz,states(A)"\S’ i.e.,q can be represented by a universal query.

4 Query Answering

We consider the problems of enumerating all solutions opbupsolutions of run-based
queries in a given tree

Proposition 1. We can compute an existential run-basedry queryqfw(t) in deter-
ministic timeO(|S| x | A| = [t|™) and hence in polynomial time for fixed

Proof. The naive algorithm were to guessiaituple of nodes and test it for membership
to q3 g(t). By a deterministic algorithm this requires tind¥|S| « |A] « [t[**!), so
we need less naive algorithm. The idea of our algorithm isuesg a selection tuple
(p1,-..,pn) € S and atuplg(ry,...,m,—1) € nodes(t)"~* and to compute the last
remaining node by answering a monadic query depending opréwvious choices. Let
thy i be the tree oveE U (X xstates(A)) obtained fromt by annotating the node
labels ofr; by p; forall1 <i <n —1.

Let B(A) be the tree automaton with signatutey (X xstates(A)) that operates
like A exceptthat maps all annotated nodes to their annotationefifeestates(B(A))
asstates(A), final(B(A)) asfinal(A) andrules(B(A)) by:

rules(B(A)) = rules(A) U {(a,p)—p | a—p € rules(A)}
UL(f,p)(p1,p2)—p | f(p1,p2)—p € rules(A)}

We can now computqiys(t) on basis of the following representation:

qa,s(t) = {(71, s M1,) | (P11 Pn) € S, T € Ay g,y (E220En 1)}

.....

We have to answeliS| « [¢["~! monadic queries of the forma) (, 4 (t707 7))
each of which requires linear tin@®(| B(A)| x |t|). Note that the size dB(A)| is 2| A|.
Thus, the overall deterministic time complexity(g|S| = | A * [¢|™).

The duality of existential and universal querig$ s = qA states(4)m\5)° Vields
an analogous polynomial time complexity bound for answeuniversalh-ary queries
qA7S() with fixed tuple sizew by O((|states(A)|™ — |S]) * | A] * |¢|™).

Proposition 2. The emptiness problem afary querieSqi’S(t) = () is NP-complete
for unbounded, i.e., ifn belongs to the input of the problem, as well as the automaton
A, the selection sef C states(A), and the tree.

Proof. The problem is clearly in NP: it suffices to guess a labeling lo§ states ofA
and a selection tuplefrom S; one can then check i@ (| A| « |¢|) whether this labeling
is a successful run and that each component labels at least one node in this run.
Now, we give a polynomial reduction of CNF satisfiabilityarur problem. The idea
is to associate with a given CNF formufea wordw (which can be viewed as a unary
tree) over the alphabdk, a, n, p} of the formxiy1ly2...01n .. Xlg1lk2- - Lin, Wheren is
the number of clauses af and k the number of Boolean variables. A pait;...l;,
means that the-th variable appears positively in theth clause ifl;; = p, negatively

if I;; = n and does not appear if; = a. Then, we give the following rules for an
automatonA with states{0, 1} U {s?,u? | b € {0,1},1 <4 <n}:

x — 0 x—1 x(-) — 0 x(-) =1
a(b) — ul a(sh) —ub, a(ul) —uby,
n(0) — s1 n(s)) — s§+1 n(uj) — Sé—s-l
n(l) — u1 n(s;) = wjy n(ug) — ufy,
p(0) — U1 p(s;) — UEH p(uy) — u§+1
p(1l) — 31 P(Sgl) Si+1 P(Ujl) — Sit1

where “” denotes any stateé), € {0,1} and1 < j < n. We accept all runs. Then
the selection set is defined As$x...x S,,, with S; = {s? | 0 < b < 1}. As the size
of the word is(n + 1) % k and the size of the automaton is@(n), the reduction is
polynomial. There is a correspondence between runs of tteeraton onw and truth
assignments, and a run will be selecting iff the correspamdissignment satisfies all
the clauses. The idea is to assign true (1) or false (0) val@evariable (represented
by thex symbol) and to select all following clauses satisfied by teggnment. For
example, if we considep = (z1 V ~z2) A (21 Vx3) Azo,thenxppaxnapxapa

is its encoding, and s} s3 ul 1 ui vl s 1 ul sd ud is arun selecting some-tuples.
So,1) is satisfiable if and only i§3 ¢(w) # 0.

5 Queries by unambiguous tree automata

We next study run-based-ary queries by unambiguous tree automata. This is a sub-
class of tree automata with a restricted amount of nondétésm.

A tree automaton is (bottom-up) deterministié no two of its rules have the same
left hand sides. It isnambiguou#f no tree permits more than one successful run by the
automaton. Deterministic tree automata are clearly ungoahis, while unambiguous
automata may be nondeterministic; they have multiple rumthe same tree of which
at most one is successful.

R

/.

a, *

k]

/@

/5.

Fig. 3. Selecting left most Ieaveﬂm{l}. Only the left run ofAs is successful.

a,

Definition 4. We call ann-ary queryunambiguougresp. deterministic) if it has the
form qjs for some unambiguous (resp. deterministic) tree automaton

Nondeterministic tree automata can recognize all regalaguage, but they an not
define all MSO-definable queries in run-based fashion. A Eropunter example is the
monadic query that selects the left-most leaf in binarystreeer > = {f,a}. It can
be defined in run-based fashlonqa} by automatonds; which licences the runs in
Fig. 3. Successful runs of; label left most leaves by and all others by. They map
ancestors of left most leaves goand all other inner nodes ta The final states arg
andl. This is done by the following states and rules:

states(A3) = {1, *,y} a—1 f(1,%) =y fly,*) =y
final(A43) = {1,y} a— * flx, %) — %

AutomatonAs is not bottom-up deterministic, but unambiguous. Nonaheteism is
needed in order to distinguish left most leaves from all athé&/hen processing bottom-
up, the automaton has to inspect the context, in order taldeghether a leaf is left-
most. So it needs to guess this property for all leaves anmdvbefy the correctness of
the guesses later on. Correctness is proved by successéul ru

Proposition 3. [[18, 3]] All monadic MSO-definable queries are unambiguous

Proof. We present a sketch of a proof based on Thatcher and Wrigletsdim plus
projection. Leip(z) be MSO formula with one free variahle which defines a monadic
query in binary trees ovel. We can express the same query by the following MSO
formula with one free set variabje

greatest,(p) = Vz.p(x) < ¢()

This formula requires to collect all possible valuesfaatisfyinge in p, so thatp de-
notes the greatest of set containing nodes selecteg{:by By Thatcher and Wright's
Theorem 1 there exists a bottom-up deterministic tree aatomA that recognizes
the tree Ianguagég,eatest@(p), which contains allY’ x B trees encoding models of
greatest,(p). The projection automatoproj(A) of A to X' is unambiguous. To see
this, note that the language df is functional: for everyX-treet there exists at most
one Boolean tre@ such that x 5 € L(A). This holds since the value ¢f is deter-
mined by the result of the query by(x) on ¢. By determinism ofA there is at most
one successful run € succ_runs4(t x 3). Hence, there is at most one successful run

7 X 3 € succ_runspoj(4)(t). FUthermorey 4y = dproj(A),states(A) x {1} -

Proposition 4. Every deterministic monadic MSO defined query can be tramsfd
effectively into a run-based queq%ys by a deterministic automataoA.

Proof. We proceed as in the proof of Proposition 3. lebe a deterministic automaton
recognizinng,eatest¢(p) andproj(A) is X-projection. We know thaproj(A) is unam-
biguous and that it can express the queryy). Furthermore, it can be checked that
this automaton is deterministic after deleting unprodigcsitates iff the query is deter-
ministic.

5.1 Efficiency and expressiveness

We call ann-ary queryCartesian closedf it is a Cartesian product of monadic queries.
If A is unambiguous then we can represerdry queriesq? ¢ as a finite unions of
Cartesian closed queries:

3 3 3
da,s = U A {pry - XA (p.}
(P1y--sPn)ES

This holds, since all components of a tuple will be selecteithé same successful run.
We can use this representation of the answer set to enunagrsteers of unambiguous
queries on demand.

Proposition 5. The emptyness probeaﬂﬁ(t) = () can be solved in tim&(n * | S| *
|A] s [¢]).

Proof. We compute the above representatiomﬁfs(t). For all (p1,...,pn) € S we
computeqi'l’{pi} and check whether at least one of them is empty. We thus have to

computeO(n * |S|) answers to monadic queries each of them in titgA| « [¢]).
Alltogether this requires tim&(n « |\S| x |A| « [t]).

We can thus decide the emptyness of unambiguoasy queries in polynomial
time even for unbounded. This is in contrast to more general run-basedry queries
by tree automata (Proposition 2).

Theorem 4. Unambiguous:-ary queries capture the class of finite unions of Cartesian
closed regulam-ary queries.

Proof. We have already seen one direction. Next note that Cartetimed regular
queries are unambiguous. Indeed regular monadic queeasnambiguous by Propo-
sition 3 and Cartesian products of unambiguous queriesleagly unambiguous too.
It remains to prove that finite unions of unambiguous queaiesunambiguous. Let
q= U§=1q134,;,5i be such a union. Let us first assume thatfalare strictly unambiguous
in that they permit precisely one successful run per treethéfe define an unambiguous
automatom as the product of thd;’s such thafinal(A) = final(A1) x ... xfinal (Ay).
Let proj;(p) be thei—th component of a state of A. We let the selection set to be
the set of all tuplegps,...,p,) € states(A)™ for which there exists € {1,...,k}
such that(proj, (p1), - - ., proj;(pn)) € S;i. Thus,g = qill,S'

Finally, note that any unambiguous tree automdtacan be made strictly unam-
biguous: let4; be the deterministic automaton accepting the trees noptatéyA;;
assumingd; and4; have disjoint sets of states, we defifieas A; U A;. This automaton
Aj is strictly unambiguous and moreover, ¢ = a3, .-

Proposition 6. A query is unambiguous iff it can be expressed by a Booleatioam
tion (disjunction, conjunction and negation) of monadic@®®rmulas.

Proof. Using that regular and MSO-definable monadic queries aénddy Theorem
4, an unambiguous-ary query can be represented as a finite disjunction of ftasnf
the forme; (x1)A. . .Adn(z,), thee;’s being monadic MSO formulas. Conversely, any
Boolean combination of monadic MSO formulas can be turnaaarfinite disjunction
of conjunction of monadic MSO formulas, and thus be represkas a finite union of
Cartesian products of monadic regular queries.

5.2 Faithful MSO formulas

Unambiguity of a query will rely on existence of a faithfulrfoula defining it, where
faithful formulae are defined by:

Definition 5. Let ¢ be a MSO formula with free second-order variables, ..., p,,.

— ¢ is k—faithful if sup,cp, [{((p1), ..., a(pn)) | t,a |= ¢}| < E.
— ¢ isfaithful if it is k—faithful for somek.

Proposition 7. ¢ is faithful iff it is equivalent to a finite disjunction af-faithful for-
mulae.

Proof. More precisely, we prove that is k—faithful iff it is a finite disjunction ofk
1—faithful formulae. A finite disjunction ok 1—faithful formulae is clearlyt—faithful.
Conversely let be ak—faithful formula. First, let us recall that the lexicograpbrder-
ing overn—uples is MSO definable by (1, ..., Y1, ooy Yn) =des Vi (ATt =
Yi N T < Yr)

Now, let us define a total ordering en-uples of sets of nodes by

le(p1y oo Py @1y Gn) =def Ni=1Pi = @iV 3T1, ooy T APy Pi(23) AVF_ g () A

Last, we define a family of—faithful' formulaeg;, 1 <i < k by:

Gi(P1, s Pn) =def OP1, s Pn) A NSZL =05 (P10) A
VQIy ceey qu(¢(qla ceey qn) A (A;;llﬁd)j(ql; ceey qu)) - le(pla ey Pns 41, Qn))

It is easy to check that thg; are1—faithful and, asp is k—faithful, ¢ is equivalent
to Vil ;.

Proposition 8. A regularn-ary query is

1. Cartesian closed iff it can be defined by samdaithful formula.
2. unambiguous iff it can be defined by some faithful formula.

Proof. Let ¢ a regular Cartesian closed query defined¢oyet us definep;(z) by
ALy ey i1y Tt 1y ey Ty P(T1 ooy X1, B, iy 1, ..., Ty). ThENQ CAN be defined by
the1—faithful formulavaz AT, (p;(x) < ¢i(z))

Conversely, ifg is defined by a —faithful formula, g is clearly Cartesian closed.

The rest of the proposition is then directly obtained by Bsifon 7 and Theorem
4. Furthermore, as proofs of Proposition 7 and Theorem 4féeetige, given a query
q defined by a formula and knowing that is faithful, we can effectively construct
(A, S) computing the query, with A unambiguous.

5.3 Deciding unambiguity of queries

We show in this section that one can decide whether a reguéay query is unam-
biguous, or equivalently by Theorem 4 whether the query igitefunion of Cartesian
closed regular queries. Note that this property is closadependence of variables in
constraint databases [14, 8]; however here we considerfamiténcollection of finite
tree structures, instead of one fixed structure.

Note that deciding whether a regular query is Cartesiarediés straightforward
as it can be defined in MSO. Similarly by using constructiofPafposition 7, we can
decidek—faithfulness of a MSO formula, for a given However, deciding whether a
regular query is a finite union of Cartesian closed regularigs requires more sophis-
ticated techniques. First, given a quetywe construct a formula which is faithful iff
is unambiguous. Second, we prove how to decide faithfuloEasormula.

Let ¢ a query defined by the (MSO) formulg (1, ..., z,). We will define¢g®,

a MSO formula defining with good compactness properties: it will be faithful asrsoo
asq can be defined by a faithful formula. Roughly speaking, giaeneet, ¢, o will
model 7> iff it is correct (a(p1) * ... * a(py) is included ing(t)) and maximal (no
node can be added to ondp;) while keeping correct)pr® (pi, . . ., p,) Wil be the
following formula:

Vry... Vo, (/\ipi(xi)) — (Z)q(l‘l, L. ,J}n)
AiVx; —\pi(xi) — Jzy ... I3 .. 32y, Nji Dj (J‘J) A\ —wbq(xl, e ,J,‘n)

Lemma 3. A queryg is a finite union of Cartesian closed queriesdff** is faithful.

Proof. By Proposition 8 we just have to prove that if the queris a finite union of
Cartesian closed queries, thefj** is faithful. Let ¢ be a finite union of Cartesian
closed queries. There exists some natural nurhlset.g = uleq} X...xqf, eachq;i
being a monadic query.

Lett be atree fronT's,. For eachl < i < n, we define=;, an equivalence relation
Onnodes(t) byﬂ'EiT{'/ if for all (71'1, ey Ty Ty ey ﬂ'n), (71'1, ey T 1y Ty Tty ees 7Tn)
belongs toy(t) iff (m,...,m—1, 7, Tix1, ..., 7,) belongs tog(¢). This just means that
mandz’ are, in some sense, interchangeablétim position w.r.t.q. Then, letr andx’
be two nodes. If for each < j < k, = belongs tag}(¢) iff =’ belongs tagi(t), then
7 =; 7. This implies thats; is of finite index bounded bg*.

Now lett and a such thatt,a = ¢g*. Let = be one node selected in thigh
position, i.e. belonging ta(p;). Then, by maximality ofp7*, if 7 =; =’ then’

belongs also te(p;). This implies thatx(p;) is a union of equivalence classes fsy.
So, the cardinality of the s€t(a(p1), ..., a(p,)) | t,a = ¢7%*} is upper-bounded by
2n.2’C .

Let us note that itp7=* is faithful as soon there is a faithful formula defining
it is non necessarly the “most faithful” one or the “less nedant” one. Indeed let us
suppose that is defined byv2_,7;(z1) A s;(x2) for somer;, s;. q is clearly2—faithful
whereas i7", valuation associated withh\r;, Vs;) or (Vr;, As;) would be added.

Now, letq be a regular query (given by a tree automaton or a formulaj:\iie con-
structgg® and A a deterministic automaton recognizing the tree languageXow B"
Lgmo(pyp,)- ThEN, We compute an automatpioj(A) as in Theorem 2. Clearly the
number of accepting runs ann proj(A) is the cardinal of (a(p1), ..., a(pn)) | t,a =
¢max}.

! A tree automatomr is saidk-ambiguous if for any tree € T's;, there exists at most
k accepting runs fot in A. The degree of ambiguity of an automatdris bounded if
A'is k-ambiguous for some natural number

So, by what precedes,is unambiguous iff the degree of ambiguity @bj(A) is
bounded, which can be decided.

Theorem 5 (Seidl [20]) Whether the degree of ambiguity of a tree automaton is balinde
is decidable. Furthermore their degree of ambiguity can deputed.

As all contructions are effective, it provides a procedunedeciding ambiguity of
q. Furthermore, this gives a way to compute an unambiguowsraibn computing.
Indeed, by proposition 8, as soon as we know thg* is faithful, we can compute,
from an automaton or a formula definigg(B, .S) with B an unambiguous automaton
S.t.qg= q%’s.

Theorem 6. Ambiguity of a query is decidable. Furthermore, wheris unambiguous,
(B, S) with B an unambiguous automaton s;t= q3 s can effectively be constructed.

Note that the construction gfB,.S) could also be done by eliminating directly
ambiguity fromproj(A) defined above. Indeed, 18 be an automaton whose ambiguity
degree is at mogdt. We can build an automatasy, simulatingB on trees which have at
leastk accepting runs i3 (by making the product of copies of B and checking the
k runs are different); as the degreeBfis k, B will be unambiguous. Then, you can
build an unambiguous automat@h,_; simulatingB on trees which have exacthy— 1
accepting runs iB, by a similar construction and checking that the tree is no¢pted
by By. By iterating the construction, you can buil&;, S;)%_,, with B; unambiguous
automata simulatingg on trees which have exactlyaccepting runs itB: ¢ is the union
of the corresponding queries and by using effective clogader union, you can then
build an unambiguous automaton for

6 Querying unranked trees

Our results carry over to automata for unranked trees, itiqpdar to the unranked
tree automata (UTAS) of Biggemann, Klein, and Wood [4], where horizontal tree lan-
guages are represented by finite word automata.

An unranked tree is built from a set of constant$ € X' by the abstract syntax
t = a(ty,...,t,) wheren > 0. A UTA H over X consists of a seftates(H), a set
final(H) C states(H), and a setules(H) of rules of the forma(A) — p whereA is
finite word automaton with alphabetates(H) andp € states(H). Runs of UTAsH
on unranked treelsare functions- : nodes(t) — states(H) defined as

t=a(ty,...,tn) V1<i<mn:r; €runsg(t;)
a(A) — p € rules(H) ri(€)...mp(€) € L(A)
p(r1,...,7n) € runsg(t)

Queries for the class of unranked trees o¥tare defined as before. The notion of
unambiguity (that is the existence of at most one run for @) tcarries over literally to
UTASs (in contrast to bottom-up determinism [16]). The saro&ls for the notions of
run-based queries by UTAs.

Theorem 7. Existential and universat-ary queries by runs of unranked tree automata
capture MSO over unranked trees (comprisingrtbe _sibl-relation). Run-based queries
by unambiguous UTAs capture the class of finite unions ofeSem closed queries.
This property is decidable.

We only give a sketch of the proof. The main idea is to convadrigs by UTAs
into queries by stepwise tree automata [6] for which all klssapply. Stepwise tree au-
tomata over an unranked signatureare tree automata for binary trees with constants
in X and a single binary function symbal. Stepwise tree automata can be understood
as tree automata that operate on Currified binary encodingzranked trees. The Cur-
rification of a(b, c(d, e, f), g) for instance is the binary tregdbQ(cQdQe@ f)Qyg .

Stepwise tree automata were proved to have two nice prepehat yield a simple
proof of the theorem. 1) N-ary queries by UTAs can be traedlabn-ary queries by
stepwise automata in linear time, and conversely in polyinbtime. The back and forth
translations preserve unambiguity. 2) All presented tesan run-based-ary queries
for binary trees apply to stepwise tree automata.

AcknowledgementsThanks to the anonymous referees for the reference to Li’ghk
work [14] and acknowledge discussions with F. Neven, W. Bfest and T. Schwentick.

References

1. R. Baumgartner, S. Flesca, and G. Gottlob. Visual web informativaation with lixto. In
28th International Conference on Very Large Data Bagegjes 119-128, 2001.

2. A. Berlea and H. Seidl. Binary queries for document trd¢srdic Journal of Computing
11(1):41-71, 2004.

3. R. Bloem and J. Engelfriet. A comparison of tree transductions defipenonadic second
order logic and by attribute grammadurnal of Comput. and Syst. S&1(1):1-50, 2000.

4. A. Bruggemann-Klein, D. Wood, and M. Murata. Regular tree agdlez hedge languages
over unranked alphabets: Version 1, Apr. 07 2001.

5. J.Carme, A. Lemay, and J. Niehren. Learning node selecting amestiincer from completely
annotated examples. [fth International Colloquium on Grammatical Inferena®lume
3264 ofLecture Notes in Atrtificial Intelligencgages 91-102. Springer Verlag, 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. J.Carme, J. Niehren, and M. Tommasi. Querying unranked tigestepwise tree automata.
In 19th International Conference on Rewriting Techniques and Applicatiaiesme 3091
of Lecture Notes in Computer Scienpages 105 — 118. Springer Verlag, 2004.

. G. Castagna. Patterns and types for querying XML10th International Symposium on
Database Programming Languagdsecture Notes in Computer Science. Springer Verlag,
Aug. 2005.

. J. Chomicki, D. Q. Goldin, and G. M. Kuper. Variable independencksggregation closure.
In ACM Conference on Principle of Databasesages 40-48, 1996.

. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez,i€nT and M. Tom-

masi. Tree automata techniques and applications. Available on: http:/mappauuniv-

lille3.fr/tata, 1997.

M. Frick, M. Grohe, and C. Koch. Query evaluation on compres$sees. In18th IEEE

Symposium on Logic in Computer Scieruages 188—197, 2003.

G. Gottlob and C. Koch. Monadic queries over tree-structured diataroceedings of the

17" LICS Lecture Notes in Computer Science, pages 189-202, Copenhdjih, 2

G. Gottlob, C. Koch, R. Baumgartner, M. Herzog, and S. Flesba. LTxto data extraction

project - back and forth between theory and practiceA@M Symposium on Principles of

Database System8CM-Press, 2004.

H. Hosoya and B. Pierce. Regular expression pattern matchingrnorJournal of Func-

tional Programming 6(13):961—-1004, 2003.

L. Libkin. Variable independence for first-order definable camsts. ACM Transactions on

Computational Logics4(4):431-451, 2003.

S. Maneth, A. Berlea, T. Perst, and H. Seidl. Xml type checking witbrmtree transducers.

In 24th ACM Symposium on Principles of Database Systeayes 283—294, New York, NY,

USA, 2005. ACM-Press.

W. Martens and J. Niehren. Minimizing tree automata for unranked.ti@10th Interna-

tional Symposium on Database Programming Languabesture Notes in Computer Sci-

ence. Springer Verlag, Aug. 2005.

M. Marx. Conditional XPath, the first order complete XPath dialecPrbreedings of the

symposium on Principles of database systgrages 13-22, 2004.

F. Neven and J. V. D. Bussche. Expressiveness of structiomgment query languages

based on attribute grammat¥Xurnal of the ACM49(1):56-100, 2002.

F. Neven and T. Schwentick. Query automata over finite tréksoretical Computer Sci-

ence 275(1-2):633-674, 2002.

H. Seidl. On the finite degree of ambiguity of finite tree automatata Informatica

26(6):527-542, 1989.

J. W. Thatcher and J. B. Wright. Generalized finite automata with dicaign to a decision

problem of second-order logiddathematical System Theo3,57—-82, 1968.

