Abstract
Graph theoretic problems are representative of fundamental computations in traditional and emerging scientific disciplines like scientific computing and computational biology, as well as applications in national security. We present our design and implementation of a graph theory application that supports the kernels from the Scalable Synthetic Compact Applications (SSCA) benchmark suite, developed under the DARPA High Productivity Computing Systems (HPCS) program. This synthetic benchmark consists of four kernels that require irregular access to a large, directed, weighted multi-graph. We have developed a parallel implementation of this benchmark in C using the POSIX thread library for commodity symmetric multiprocessors (SMPs). In this paper, we primarily discuss the data layout choices and algorithmic design issues for each kernel, and also present execution time and benchmark validation results.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
DARPA Information Processing Technology Office: High productivity computing systems project (2004), http://www.darpa.mil/ipto/programs/hpcs/
Kepner, J., Koester, D.P.: et al.: HPCS Scalable Synthetic Compact Application (SSCA) Benchmarks (2004), http://www.highproductivity.org/SSCABmks.htm
Kepner, J., Koester, D.P.: et al.: HPCS SSCA#2 Graph Analysis Benchmark Specifications v1.0 (2005)
Dongarra, J., Bunch, J., Moler, C., Stewart, G.: LINPACK Users’ Guide. SIAM, Philadelphia (1979)
Bader, D., Sreshta, S., Weisse-Bernstein, N.: Evaluating arithmetic expressions using tree contraction: A fast and scalable parallel implementation for symmetric multiprocessors (SMPs). In: Sahni, S.K., Prasanna, V.K., Shukla, U. (eds.) HiPC 2002. LNCS, vol. 2552, pp. 63–75. Springer, Heidelberg (2002)
Bader, D.A., Cong, G.: A fast, parallel spanning tree algorithm for symmetric multiprocessors (SMPs). In: Proc. Int’l Parallel and Distributed Processing Symp. (IPDPS 2004), Santa Fe, NM (2004)
Bader, D.A., Cong, G.: Fast shared-memory algorithms for computing the minimum spanning forest of sparse graphs. In: Proc. Int’l Parallel and Distributed Processing Symp. (IPDPS 2004), Santa Fe, NM (2004)
Helman, D.R., JáJá, J.: Designing practical efficient algorithms for symmetric multiprocessors. In: Goodrich, M.T., McGeoch, C.C. (eds.) ALENEX 1999. LNCS, vol. 1619, pp. 37–56. Springer, Heidelberg (1999)
Helman, D.R., JáJá, J.: Prefix computations on symmetric multiprocessors. Journal of Parallel and Distributed Computing 61, 265–278 (2001)
Bader, D.A., Madduri, K.: Design and implementation of the HPCS graph analysis benchmark on symmetric multiprocessors. Technical report, Georgia Instutite of Technology (2005)
Park, J., Penner, M., Prasanna, V.: Optimizing graph algorithms for improved cache performance. In: Proc. Int’l Parallel and Distributed Processing Symp. (IPDPS 2002), Fort Lauderdale, FL (2002)
Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal 49, 291–307 (1970)
Sangiovanni-Vincentelli, A., Chert, L., Chua, L.: A new tearing approach: Node tearing nodal analysis. In: Proc. IEEE Int’l Symp. on Circ. and Syst., Phoenix, AZ, pp. 143–147 (1975)
Sangiovanni-Vincentelli, A., Chert, L., Chua, L.: An efficient heuristic cluster algorithm for tearing large-scale networks. IEEE Trans. Circuits and Systems, 709–717 (1977)
Bomze, I., Budinich, M., Pardalos, P., Pelillo, M.: The maximum clique problem. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, vol. 4. Kluwer Academic Publishers, Boston (1999)
Johnson, D., Trick, M. (eds.): Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, October 11-13, 1993; DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26. American Mathematical Society, Providence (1996)
Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. In: Proc. Supercomputing 1995, San Diego, CA (1995)
Karypis, G., Kumar, V.: MeTiS: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices. Department of Computer Science, University of Minnesota. Version 4.0 edn. (1998)
Koester, D.P.: Parallel Block-Diagonal-Bordered Sparse Linear Solvers for Power Systems Applications. PhD thesis, Syracuse University, Syracuse, NY (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bader, D.A., Madduri, K. (2005). Design and Implementation of the HPCS Graph Analysis Benchmark on Symmetric Multiprocessors. In: Bader, D.A., Parashar, M., Sridhar, V., Prasanna, V.K. (eds) High Performance Computing – HiPC 2005. HiPC 2005. Lecture Notes in Computer Science, vol 3769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602569_48
Download citation
DOI: https://doi.org/10.1007/11602569_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30936-9
Online ISBN: 978-3-540-32427-0
eBook Packages: Computer ScienceComputer Science (R0)