Abstract
We address the problem of packing of a set of n weighted rectangles into a single rectangle so that the total weight of the packed rectangles is maximized. We consider the case of large resources, that is, the single rectangle is \({\it \Omega}(1/\varepsilon^{3})\) times larger than any rectangle to be packed, for small ε> 0. We present an algorithm which finds a packing of a subset of rectangles with the total weight at least (1 − ε) times the optimum. The running time of the algorithm is polynomial in n and 1/ε. As an application we present a (2 + ε)-approximation algorithm for a special case of the advertisement placement problem.
Supported by EU-Project CRESCCO IST-2001-33135, and by EU-Project AEOLUS 015964.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adler, M., Gibbons, P., Matias, Y.: Scheduling space-sharing for internet advertising. Journal of Scheduling (1998)
Baker, B.S., Brown, D.J., Katseff, H.P.: A 5/4 algorithm for two dimensional packing. Journal of Algorithms 2, 348–368 (1981)
Baker, B.S., Calderbank, A.R., Coffman, E.G., Lagarias, J.C.: Approximation algorithms for maximizing the number of squares packed into a rectangle. SIAM Journal on Algebraic and Discrete Methods 4, 383–397 (1983)
Baker, B.S., Coffman, E.G., Rivest, R.L.: Orthogonal packings in two dimensions. SIAM Journal on Computing 9, 846–855 (1980)
Bansal, N., Sviridenko, M.: New approximability and inapproximability results for 2-dimensional bin packing. In: Proceedings 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 189–196 (2004)
Caprara, A.: Packing 2-dimensional bins in harmony. In: Proceedings 43rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 490–499 (2002)
Chung, F.R.K., Garey, M.R., Johnson, D.S.: On packing two-dimensional bins. SIAM Journal on Algebraic and Discrete Methods 3, 66–76 (1982)
Coffman Jr., E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on Computing 9, 808–826 (1980)
Correa, J.R., Kenyon, C.: Approximation schemes for multidimensional packing. In: Proceedings 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 179–188 (2004)
Ferreira, C.E., Miyazawa, F.K., Wakabayashi, Y.: Packing squares into squares. Perquisa Operacional 19, 349–355 (1999)
Freund, A., Naor, J.: Approximating the advertisement placement problem. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 415–424. Springer, Heidelberg (2002)
Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. Freeman, San Francisco (1979)
Gilmore, P.C., Gomory, R.E.: Multistage cutting stock problems of two and more dimensions. Operations Research 13, 94–120 (1965)
Golan, I.: Performance bounds for orthogonal, oriented two-dimensional packing algorithms. SIAM Journal on Computing 10, 571–582 (1981)
Grigoriadis, M.D., Khachiyan, L.G., Porkolab, L., Villavicencio, J.: Approximate max-min resource sharing for structured concave optimization. SIAM Journal on Optimization 41, 1081–1091 (2001)
Jansen, K.: Approximation algorithms for the general max-min resource sharing problem: faster and simpler. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 311–322. Springer, Heidelberg (2004)
Jansen, K., Zhang, G.: Maximizing the number of packed rectangles. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 362–371. Springer, Heidelberg (2004)
Jansen, K., Zhang, G.: On rectangle packing: maximizing benefits. In: Proceedings 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 197–206 (2004)
Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack problems. Springer, Heidelberg (2004)
Kenyon, C., Rémila, E.: Approximate strip-packing. In: Proceedings 37th Annual Symposium on Foundations of Computer Science (FOCS), pp. 31–36 (1996)
Lawler, E.: Fast approximation algorithms for knapsack problems. Mathematics of Operations Research 4, 339–356 (1979)
Leung, J.Y.-T., Tam, T.W., Wong, C.S., Young, G.H., Chin, F.Y.L.: Packing squares into a square. Journal of Parallel and Distributed Computing 10, 271–275 (1990)
Schiermeyer, I.: Reverse fit: a 2-optimal algorithm for packing rectangles. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 290–299. Springer, Heidelberg (1994)
Seiden, S., van Stee, R.: New bounds for multi-dimentional packing. Algorithmica 36(3), 261–293 (2003)
Sleator, D.D.: A 2.5 times optimal algorithm for bin packing in two dimensions. Informatin Processing Letters (10), 37–40 (1980)
Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM Journal on Computing 26(2), 401–409 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fishkin, A.V., Gerber, O., Jansen, K. (2005). On Efficient Weighted Rectangle Packing with Large Resources. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_103
Download citation
DOI: https://doi.org/10.1007/11602613_103
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30935-2
Online ISBN: 978-3-540-32426-3
eBook Packages: Computer ScienceComputer Science (R0)