Skip to main content

A Complete Characterization of Tolerable Adversary Structures for Secure Point-to-Point Transmissions Without Feedback

  • Conference paper
Algorithms and Computation (ISAAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3827))

Included in the following conference series:

Abstract

Problems of unconditionally secure communication have been studied extensively in network models. Dolev-Dwork-Waarts-Yung considered the Byzantine threats model, in which the adversary can only take over a number of nodes bounded by a threshold. They studied two cases:

  1. 1

    all communication links (edges in the graph) are two-way communication,

  2. 2

    all communication links are one-way communication, and there is no feedback.

The node sets that the adversary can take over was generalized by Hirt-Maurer to an adversary structure. At PODC 2002, Kumar-Goundan-Srinathan-Rangan generalized Dolev-Dwork-Waarts-Yung’s first scenario to the case of a general adversary structure. In this paper we generalize Dolev-Dwork-Waarts-Yung’s second scenario to the case of a general adversary structure. As in Dolev-Dwork-Waarts-Yung, our work relies on the use of secret sharing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computing. In: Proc. ACM STOC 1988, pp. 1–10 (1988)

    Google Scholar 

  2. Burmester, M., Desmedt, Y.G.: Is hierarchical public-key certification the next target for hackers? Communications of the ACM 47(8), 68–74 (2004)

    Article  Google Scholar 

  3. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Proc. ACM STOC, May 2–4, pp. 11–19 (1988)

    Google Scholar 

  4. Desmedt, Y., Wang, Y.: Perfectly secure message transmission revisited. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Dolev, D.: The Byzantine generals strike again. Journal of Algorithms 3, 14–30 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. Journal of the ACM 40(1), 17–47 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eichin, M.W., Rochlis, J.A.: With microscope and tweezers: an analysis of the Internet virus. In: Proc. IEEE Sym. on Security and Privacy, November 1988, pp. 326–343 (1989)

    Google Scholar 

  8. Franklin, M., Yung, M.: Secure hypergraphs: privacy from partial broadcast. In: Proc. ACM STOC 1995, pp. 36–44. ACM Press, New York (1995)

    Google Scholar 

  9. Hirt, M., Maurer, U.: Complete Characterization of Adversaries Tolerable in Secure Multi-Party Computation. In: Proc. of the 16th ACM PODC, August 1997, pp. 25–34 (1997)

    Google Scholar 

  10. Hirt, M., Maurer, U.: Player Simulation and General Adversary Structures in Perfect Multiparty Computation. Journal of Cryptology 13(1), 31–60 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. ILOVEYOU computer bug bites hard, spreads fast, May 4 (2000), http://www.cnn.com/2000/TECH/computing/05/04/iloveyou.01/index.html

  12. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structures. In: Proc. IEEE Global Telecommunications Conf., Globecom 1987, pp. 99–102 (1987)

    Google Scholar 

  13. Kumar, M., Goundan, P., Srinathan, K., Rangan, C.: On perfectly secure communication over arbitrary networks. In: Proc. of ACM PODC 2002, pp. 193–202 (2002)

    Google Scholar 

  14. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North-Holland Publishing Company, Amsterdam (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Desmedt, Y., Wang, Y., Burmester, M. (2005). A Complete Characterization of Tolerable Adversary Structures for Secure Point-to-Point Transmissions Without Feedback. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_29

Download citation

  • DOI: https://doi.org/10.1007/11602613_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30935-2

  • Online ISBN: 978-3-540-32426-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics