Abstract
In this paper we study collective additive tree spanners for special families of graphs including planar graphs, graphs with bounded genus, graphs with bounded tree-width, graphs with bounded clique-width, and graphs with bounded chordality. We say that a graph G=(V,E) admits a system of μ collective additive tree r -spanners if there is a system \(\mathcal{T}(G)\) of at most μ spanning trees of G such that for any two vertices x,y of G a spanning tree \(T \in \mathcal{T}(G)\) exists such that d T (x,y)≤ d G (x,y)+r. We describe a general method for constructing a ”small” system of collective additive tree r-spanners with small values of r for ”well” decomposable graphs, and as a byproduct show (among other results) that any weighted planar graph admits a system of \(O(\sqrt{n})\) collective additive tree 0–spanners, any weighted graph with tree-width at most k–1 admits a system of k log2 n collective additive tree 0–spanners, any weighted graph with clique-width at most k admits a system of k log3/2 n collective additive tree (2w)–spanners, and any weighted graph with size of largest induced cycle at most c admits a system of log2 n collective additive tree \((2\lfloor{c/2}\rfloor{\sf w})\)–spanners and a system of 4log2 n collective additive tree \((2(\lfloor{c/3}\rfloor{+1}){\sf w})\)–spanners (here, w is the maximum edge weight in G). The latter result is refined for weighted weakly chordal graphs: any such graph admits a system of 4 log2 n collective additive tree (2w)-spanners. Furthermore, based on this collection of trees, we derive a compact and efficient routing scheme for those families of graphs.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abraham, I., Gavoille, C., Malkhi, D.: Compact routing for graphs excluding a fixed minor. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 442–456. Springer, Heidelberg (2005)
Alon, N., Seymour, P., Thomas, R.: A Separator Theorem for Graphs with an Excluded Minor and its Applications. In: Proc. of STOC 1990, pp. 293–299. ACM, New York (1990)
Borie, R., Johnson, J.L., Raghavan, V., Spinrad, J.P.: Robust polynomial time algorithms on clique-width k graphs (manuscript 2002)
Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Discr. Math. 8, 359–387 (1995)
Chepoi, V.D., Dragan, F.F., Yan, C.: Additive Spanners for k-Chordal Graphs. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp. 96–107. Springer, Heidelberg (2003)
Corneil, D.G., Dragan, F.F., Köhler, E., Yan, C.: Collective tree 1-spanners for interval graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 151–162. Springer, Heidelberg (2005)
Courcelle, B., Olariu, S.: Upper bounds to the clique-width of graphs. Discrete Appl. Math. 101, 77–114 (2000)
Djidjev, H.N.: On the problem of partitioning planar graphs. SIAM, J. Alg. Disc. Meth. 3, 229–240 (1982)
Djidjev, H.N.: A separator theorem for graphs of fixed genus. Serdica 11, 319–329 (1985)
Dragan, F.F., Yan, C., Corneil, D.G.: Collective tree spanners and routing in AT-free related graphs. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 68–80. Springer, Heidelberg (2004)
Dragan, F.F., Yan, C., Lomonosov, I.: Collective tree spanners of graphs. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 64–76. Springer, Heidelberg (2004)
Engelfriet, J., Rozenberg, G.: Node replacement graph grammars. In: Handbook of Graph Grammars and Computing by Graph Transformation, Foundations, vol. I, pp. 1–94. World Scientific, Singapore (1997)
Fraigniaud, P., Gavoille, C.: Routing in Trees. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg (2001)
Gilbert, J.R., Hutchinson, J.P., Tarjan, R.E.: A separator theorem for graphs of bounded genus. Journal of Algorithms 5, 391–407 (1984)
Gilbert, J.R., Rose, D.J., Edenbrandt, A.: A separator theorem for chordal graphs. SIAM J. Alg. Discrete Meth. 5, 306–313 (1984)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
Golumbic, M.C., Rotics, U.: On the Clique-Width of Perfect Graph Classes. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 135–147. Springer, Heidelberg (1999)
Gupta, A., Kumar, A., Rastogi, R.: Traveling with a Pez Dispenser (or, Routing Issues in MPLS). SIAM J. Comput. 34, 453–474 (2005)
Kloks, T.: Treewidth: Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994)
Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36, 346–358 (1979)
Liestman, A.L., Shermer, T.: Additive graph spanners. Networks 23, 343–364 (1993)
Peleg, D., Schäffer, A.A.: Graph Spanners. J. Graph Theory 13, 99–116 (1989)
Prisner, E., Kratsch, D., Le, H.-O., Müller, H., Wagner, D.: Additive tree spanners. SIAM J. Discrete Math. 17, 332–340 (2003)
Robertson, N., Seymour, P.D.: Graph minors II: Algorithmic aspects of tree-width. Journal of Algorithms 7, 309–322 (1986)
Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. of SPAA 2001, pp. 1–10. ACM, New York (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dragan, F.F., Yan, C. (2005). Collective Tree Spanners in Graphs with Bounded Genus, Chordality, Tree-Width, or Clique-Width. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_59
Download citation
DOI: https://doi.org/10.1007/11602613_59
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30935-2
Online ISBN: 978-3-540-32426-3
eBook Packages: Computer ScienceComputer Science (R0)