Skip to main content

Collective Tree Spanners in Graphs with Bounded Genus, Chordality, Tree-Width, or Clique-Width

  • Conference paper
Algorithms and Computation (ISAAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3827))

Included in the following conference series:

Abstract

In this paper we study collective additive tree spanners for special families of graphs including planar graphs, graphs with bounded genus, graphs with bounded tree-width, graphs with bounded clique-width, and graphs with bounded chordality. We say that a graph G=(V,E) admits a system of μ collective additive tree r -spanners if there is a system \(\mathcal{T}(G)\) of at most μ spanning trees of G such that for any two vertices x,y of G a spanning tree \(T \in \mathcal{T}(G)\) exists such that d T (x,y)≤ d G (x,y)+r. We describe a general method for constructing a ”small” system of collective additive tree r-spanners with small values of r for ”well” decomposable graphs, and as a byproduct show (among other results) that any weighted planar graph admits a system of \(O(\sqrt{n})\) collective additive tree 0–spanners, any weighted graph with tree-width at most k–1 admits a system of k log2 n collective additive tree 0–spanners, any weighted graph with clique-width at most k admits a system of k log3/2 n collective additive tree (2w)–spanners, and any weighted graph with size of largest induced cycle at most c admits a system of log2 n collective additive tree \((2\lfloor{c/2}\rfloor{\sf w})\)–spanners and a system of 4log2 n collective additive tree \((2(\lfloor{c/3}\rfloor{+1}){\sf w})\)–spanners (here, w is the maximum edge weight in G). The latter result is refined for weighted weakly chordal graphs: any such graph admits a system of 4 log2 n collective additive tree (2w)-spanners. Furthermore, based on this collection of trees, we derive a compact and efficient routing scheme for those families of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, I., Gavoille, C., Malkhi, D.: Compact routing for graphs excluding a fixed minor. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 442–456. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Alon, N., Seymour, P., Thomas, R.: A Separator Theorem for Graphs with an Excluded Minor and its Applications. In: Proc. of STOC 1990, pp. 293–299. ACM, New York (1990)

    Google Scholar 

  3. Borie, R., Johnson, J.L., Raghavan, V., Spinrad, J.P.: Robust polynomial time algorithms on clique-width k graphs (manuscript 2002)

    Google Scholar 

  4. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Discr. Math. 8, 359–387 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chepoi, V.D., Dragan, F.F., Yan, C.: Additive Spanners for k-Chordal Graphs. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp. 96–107. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Corneil, D.G., Dragan, F.F., Köhler, E., Yan, C.: Collective tree 1-spanners for interval graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 151–162. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Courcelle, B., Olariu, S.: Upper bounds to the clique-width of graphs. Discrete Appl. Math. 101, 77–114 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Djidjev, H.N.: On the problem of partitioning planar graphs. SIAM, J. Alg. Disc. Meth. 3, 229–240 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Djidjev, H.N.: A separator theorem for graphs of fixed genus. Serdica 11, 319–329 (1985)

    MATH  MathSciNet  Google Scholar 

  10. Dragan, F.F., Yan, C., Corneil, D.G.: Collective tree spanners and routing in AT-free related graphs. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 68–80. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Dragan, F.F., Yan, C., Lomonosov, I.: Collective tree spanners of graphs. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 64–76. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Engelfriet, J., Rozenberg, G.: Node replacement graph grammars. In: Handbook of Graph Grammars and Computing by Graph Transformation, Foundations, vol. I, pp. 1–94. World Scientific, Singapore (1997)

    Chapter  Google Scholar 

  13. Fraigniaud, P., Gavoille, C.: Routing in Trees. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Gilbert, J.R., Hutchinson, J.P., Tarjan, R.E.: A separator theorem for graphs of bounded genus. Journal of Algorithms 5, 391–407 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gilbert, J.R., Rose, D.J., Edenbrandt, A.: A separator theorem for chordal graphs. SIAM J. Alg. Discrete Meth. 5, 306–313 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  17. Golumbic, M.C., Rotics, U.: On the Clique-Width of Perfect Graph Classes. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 135–147. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Gupta, A., Kumar, A., Rastogi, R.: Traveling with a Pez Dispenser (or, Routing Issues in MPLS). SIAM J. Comput. 34, 453–474 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kloks, T.: Treewidth: Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  20. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36, 346–358 (1979)

    Article  MathSciNet  Google Scholar 

  21. Liestman, A.L., Shermer, T.: Additive graph spanners. Networks 23, 343–364 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Peleg, D., Schäffer, A.A.: Graph Spanners. J. Graph Theory 13, 99–116 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Prisner, E., Kratsch, D., Le, H.-O., Müller, H., Wagner, D.: Additive tree spanners. SIAM J. Discrete Math. 17, 332–340 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Robertson, N., Seymour, P.D.: Graph minors II: Algorithmic aspects of tree-width. Journal of Algorithms 7, 309–322 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  25. Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. of SPAA 2001, pp. 1–10. ACM, New York (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dragan, F.F., Yan, C. (2005). Collective Tree Spanners in Graphs with Bounded Genus, Chordality, Tree-Width, or Clique-Width. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_59

Download citation

  • DOI: https://doi.org/10.1007/11602613_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30935-2

  • Online ISBN: 978-3-540-32426-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics