Skip to main content

Fast Algorithms for Finding Disjoint Subsequences with Extremal Densities

  • Conference paper
Algorithms and Computation (ISAAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3827))

Included in the following conference series:

  • 1403 Accesses

Abstract

We derive fast algorithms for the problem of finding, on the real line, a prescribed number of intervals of maximum total length that contain at most some prescribed number of points from a given point set. Basically this is a typical dynamic programming problem, however, for input sizes much bigger than the two parameters we can improve the obvious time bound by selecting a restricted set of candidate intervals that are sufficient to build some optimal solution. As a byproduct, the same idea improves an algorithm for a similar subsequence problem recently brought up by Chen, Lu and Tang at IWBRA 2005. The problems are motivated by the search for significant patterns in certain biological data. While the algorithmic idea for the asymptotic worst-case bound is rather evident, we also consider further heuristics to save even more time in typical instances. One of them, described in this paper, leads to an apparently open problem of computational geometry flavour (where we are seeking a subquadratic algorithm) which might be interesting in itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, A., Suri, S.: Fast algorithms for computing the largest empty rectangle. In: Symp. on Comput. Geometry, pp. 278–290 (1987)

    Google Scholar 

  2. Agnarsson, G., Damaschke, P., Halldórsson, M.M.: Powers of geometric intersection graphs and dispersion algorithms. Discrete Applied Mathematics 132 (2003); Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 140–149. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Attalah, M.J., Fredrickson, G.N.: A note on finding a maximum empty rectangle. Discrete Applied Math. 13, 87–91 (1986)

    Article  Google Scholar 

  4. Baran, I., Demaine, E., Patrascu, M.: Subquadratic algorithms for 3SUM. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 409–421. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Beger, R.D., Bolton, P.H.: Protein φ and ψ dihedral restraints determined from multidimensional hypersurface correlations of backbone chemical shifts and their use in the determination of protein tertiary structures. J. of Biomol. NMR 10, 129–142 (1997)

    Article  Google Scholar 

  6. Chazelle, B., Drysdale, L.R.S., Lee, D.T.: Computing the largest empty rectangle. SIAM J. Comp. 15, 550–555 (1986)

    MathSciNet  Google Scholar 

  7. Chen, Y.H., Lu, H.I., Tang, C.Y.: Disjoint segments with maximum density. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 845–850. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Cornilescu, G., Delaglio, F., Bax, A.: Protein backbone angle restraints from searching a database for chemical shift and sequence homology (manuscript 1998), http://spin.niddk.nih.gov/bax/software/TALOS

  9. Dor, D.: Selection algorithms, PhD thesis, Tel-Aviv Univ. (1995)

    Google Scholar 

  10. Edmonds, J., Gryz, J., Liang, D., Miller, R.J.: Mining for empty rectangles in large data sets. Theoretical Computer Science 296, 435–452 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Eppstein, D., Galil, Z., Giancarlo, R., Italiano, G.F.: Sparse dynamic programming I: Linear cost functions. J. of the ACM 39, 519–545 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Galil, Z., Park, K.: Dynamic programming with convexity, concavity and sparsity. Theor. Computer Science 92, 49–76 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Liu, B., Ku, L.P., Hsu, W.: Discovering interesting holes in data. In: 15th IJCAI 1997, pp. 930–935 (1997)

    Google Scholar 

  14. Mäkinen, V., Navarro, G., Ukkonen, E.: Algorithms for transposition invariant string matching. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 191–202. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Orlowski, M.: A new algorithm for the largest empty rectangle problem. Algorithmica 5, 65–73 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Paterson, M.S.: Progress in selection. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 368–379. Springer, Heidelberg (1996)

    Google Scholar 

  17. Ruzzo, W.L., Tompa, M.: A linear time algorithm for finding all maximal scoring subsequences. In: 7th Int. Conf. Intelligent Systems for Molecular Biology, pp. 234–241. AAAI, Menlo Park (1999)

    Google Scholar 

  18. Wang, Y., Jardetzky, O.: Probability-based protein secondary structure identification using combined NMR chemical-shift data. Protein Science 11, 852–861 (2002)

    Article  Google Scholar 

  19. Xu, X.P., Case, D.A.: Probing multiple effects on 15 N, 13 C α, 13 C β and 13 C chemical shifts in peptides using density functional theory. Biopolymers 65, 408–423 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bergkvist, A., Damaschke, P. (2005). Fast Algorithms for Finding Disjoint Subsequences with Extremal Densities. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_72

Download citation

  • DOI: https://doi.org/10.1007/11602613_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30935-2

  • Online ISBN: 978-3-540-32426-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics