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Abstract. We present upper bounds on the computational power of an
optical model of computation called the C2-CSM. We show that C2-CSM
time is no more powerful than sequential space, thus giving one of the
two inclusions that are necessary to show that the model verifies the
parallel computation thesis. Furthermore we show that C2-CSMs that
simultaneously use polynomial space and polylogarithmic time decide
no more than the class NC.

1 Introduction

The computational model we study is relatively new and is called the continu-
ous space machine (CSM) [11, 12, 13, 20, 21, 22, 23]. The original definition of the
model was by Naughton [11, 12]. The CSM is inspired by classical Fourier optics
and uses complex-valued images, arranged in a grid structure, for data storage.
The program also resides in images. The CSM has the ability to perform Fourier
transformation, complex conjugation, multiplication, addition, thresholding and
resizing of images. It has simple control flow operations and is deterministic. We
analyse the model in terms of seven complexity measures inspired by real-world
resources.

A rather general variant of the model was previously shown [23] to decide the
membership problem for all recursively enumerable languages, and as such is
unreasonable in terms of implementation. Also, the growth in resource usage was
shown for each CSM operation, which in some cases was unreasonably large [21].
This work motivated the definition of the C2-CSM, a more realistic and restricted
CSM.

Recently [22] we have given lower bounds on the computational power of the
C2-CSM by showing that it is at least as powerful as models that verify the par-
allel computation thesis. This thesis [4, 6] states that parallel time corresponds,
within a polynomial, to sequential space for reasonable parallel models. See, for
example, [18, 14, 8, 7] for details. Furthermore we have shown that C2-CSMs that
simultaneously use polynomial space and polylogarithmic time accept at least
the class NC [22].

Here we present the other of the two inclusions that are necessary in order
to verify the parallel computation thesis; we show that C2-CSMs computing in
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time T (n) accept at most the languages accepted by deterministic Turing ma-
chines in O(T 2(n)) space: C2-CSM-TIME(T (n)) ⊆ DSPACE(O(T 2(n))). Also we
show that C2-CSMs that simultaneously use polynomial space and polylogarith-
mic time accept at most the class NC: C2-CSM-SPACE,TIME(nO(1), logO(1) n)
⊆ NC. These inclusions are established via C2-CSM simulation by a polynomial
sized, log depth, logspace uniform circuit.

2 The CSM

We begin by informally describing the model, this brief overview is not intended
to be complete more details are to be found in [23, 20].

A complex-valued image (or simply, image) is a function f : [0, 1)×[0, 1) → C,
where [0, 1) is the half-open real unit interval. We let I denote the set of complex-
valued images. Let N+ = {1, 2, 3, . . .}, N = N+ ∪{0}, and for a given CSM M let
N be a countable set of images that encode M ’s addresses. Additionally, for a
given M there is an address encoding function E : N → N such that E is Turing
machine decidable, under some reasonable representation of images as words. An
address is an element of N × N.

Definition 1 (CSM). A CSM is a quintuple M = (E, L, I, P,O), where
E : N → N is the address encoding function
L = ((sξ, sη) , (aξ, aη) , (bξ, bη)) are the addresses: sta, a, and b,
I = ((ι1ξ

, ι1η ), . . . , (ιkξ
, ιkη )) are the addresses of the k input images,

P = {(ζ1, p1ξ
, p1η), . . . , (ζr, prξ

, prη)} are the r programming symbols and
their addresses where ζj ∈({h, v, ∗, ·,+, ρ, st, ld, br, hlt} ∪ N ) ⊂ I,

O = ((o1ξ
, o1η ), . . . , (olξ , olη )) are the addresses of the l output images.

Each address is an element from {0, 1, . . . , Ξ−1}×{0, 1, . . . ,Y−1} where Ξ,Y ∈
N+. Addresses a and b are distinct.

Addresses whose contents are not specified by P in a CSM definition are
assumed to contain the constant image f(x, y) = 0. We interpret this definition to
mean that M is (initially) defined on a grid of images bounded by the constants
Ξ and Y, in the horizontal and vertical directions respectively.

In our grid notation the first and second elements of an address tuple refer to
the horizontal and vertical axes of the grid respectively, and image (0, 0) is at the
lower left-hand corner of the grid. The images have the same orientation as the
grid. Figure 1 gives the CSM operations in this grid notation. Configurations are
defined in a straightforward way as a tuple 〈c, e〉 where c is an address called the
control and e represents the grid contents. For a more thourough introduction
see [20, 23].

Next we define some CSM complexity measures. All resource bounding func-
tions map from N into N and are assumed to have the usual properties [1].

Definition 2. The time complexity of a CSM M is the number of configura-
tions in the computation sequence of M , beginning with the initial configuration
and ending with the first final configuration.
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h : replace image in a with its horizontal 1D Fourier transform (FT).
v : replace image in a with its vertical 1D FT.
∗ : replace image in a with its complex conjugate.
· : multiply (point by point) the two images in a and b. Store result in a.
+ : perform a complex (point by point) addition of a and b. Store result

in a.
ρ zl zu : zl, zu ∈ I; filter the image in a by amplitude using zl and zu as lower

and upper amplitude threshold images, respectively.
st ξ1 ξ2 η1 η2 : ξ1, ξ2, η1, η2 ∈ N; copy the image in a into the rectangle of images

whose bottom left-hand corner address is (ξ1, η1) and whose top right-
hand corner address is (ξ2, η2).

ld ξ1 ξ2 η1 η2 : ξ1, ξ2, η1, η2 ∈ N; copy into a the rectangle of images whose bottom
left-hand corner address is (ξ1, η1) and top right-hand corner address
is (ξ2, η2).

br ξ η : ξ, η ∈ N; unconditionally branch to the image at address (ξ, η).
hlt : halt.

Fig. 1. The set of CSM operations, given in our grid notation

Definition 3. The grid complexity of a CSM M is the minimum number of
images, arranged in a rectangular grid, for M to compute correctly on all inputs.

Let S : I × (N × N) → I, where S(f(x, y), (Φ, Ψ)) is a raster image, with ΦΨ
constant-valued pixels arranged in Φ columns and Ψ rows, that approximates
f(x, y). If we choose a reasonable and realistic S then the details of S are not
important.

Definition 4. The spatialRes complexity of a CSM M is the minimum ΦΨ
such that if each image f(x, y) in the computation of M is replaced with
S(f(x, y), (Φ, Ψ)) then M computes correctly on all inputs.

Definition 5. The dyRange complexity of a CSM M is the ceiling of the max-
imum of all the amplitude values stored in all of M ’s images during M ’s com-
putation.

In earlier treatments [21, 23] we defined the complexity measures amplRes,
phaseRes and freq. amplRes and phaseRes are measures of the cardinality
of discrete amplitude and phase values of the complex numbers in the range of
CSM images. In the present work amplRes and phaseRes both have constant
value of 2 which means that all images are of the form f : [0, 1) × [0, 1) →
{0,± 1

2 ,±1,± 3
2 , . . .}. Furthermore we are studying a restricted CSM to which

freq does not apply.
Often we wish to make analogies between space on some well-known model

and CSM ‘space-like’ resources. Thus we define the following convenient term.

Definition 6. The space complexity of a CSM M is the product of all of M ’s
complexity measures except time.
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We have defined the complexity of a computation (sequence of configurations)
for each measure. We extend this definition to the complexity of a (possibly
non-final) configuration in the obvious way. Also, we sometimes talk about the
complexity of an image, this is simply the complexity of the configuration that
the image is in.

In [21, 20] we defined the C2-CSM, a restricted and more realistic class of CSM.

Definition 7 (C2-CSM). A C2-CSM is a CSM whose computation time is de-
fined for t ∈ {1, 2, . . . , T (n)} and has the following restrictions:
– For all time t both amplRes and phaseRes have constant value of 2.
– For all time t each of spatialRes, grid and dyRange is O(2t) and space

is redefined to be the product of all complexity measures except time and
freq.

– Operations h and v compute the discrete FT (DFT) in the horizontal and
vertical directions respectively.

– Given some reasonable binary word representation of the set of addresses N ,
the address encoding function E : N → N is decidable by a logspace Turing
machine.

3 Circuits and Representation

In this work we are using logspace uniform circuits over the complete basis ∧, ∨
and ¬ with the usual complexity measures of size and depth [1, 15]. For conve-
nience we frequently write “uniform” instead of “logspace uniform”. Given a cir-
cuit cn, its encoding cn is a string of 4-tuples, where each tuple encodes a single
gate and is of the form (g, b, gl, gr)∈({0, 1}+, {∧,∨,¬}, {0, 1}+ ∪ ∅, {0, 1}+ ∪ ∅).
The tuple specifies the gate label g, the operation b that the gate computes, and
the inputs gl and gr. For ¬ gates exactly one of gl or gr is the null symbol ∅.

Let U-SIZE,DEPTH(size(n), depth(n)) be the class of languages recognised
by logspace uniform bounded fan-in circuits of size size(n) and depth depth(n),
respectively. The equality NSPACE(SO(1)(n)) = U-SIZE,DEPTH(2nO(1)

,
SO(1)(n)) is well-known [3, 8]. Circuit depth is a measure of parallel time, hence
logspace uniform circuits verify the parallel computation thesis. Specifically we
are interested in the inclusion [1, 8]

U-SIZE,DEPTH(2S(n), S(n)) ⊆ DSPACE(O(S(n))). (1)

Suppose we are simulating a C2-CSM M that has time, grid, spatialRes,
dyRange and space of T (n), G(n), Rs(n), Rd(n) and S(n) respectively. From
Definition 7, S(n) = G(n)Rs(n)Rd(n)4 � cG2T (n)cRs2T (n)cRd2T (n) for constants
cG, cRs , cRd . To simplify things (by removing the constants) we redefine the the
time of M by increasing it by a constant, T ′(n) =

⌈
log(c2T (n))

⌉
where c =

max(cG, cRs , cRd). In the sequel we write T ′(n) as T (n). space is now bounded
above by 2T (n)2T (n)2T (n), specifically each of grid, spatialRes and dyRange
is now bounded above by 2T (n). Next let G(n) = Gx(n)Gy(n) and Rs(n) =
Rsx(n)Rsy(n), where Gx(n) and Gy(n) are the number of grid images in the
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horizontal and vertical directions respectively, and where Rsx
(n) and Rsy

(n) are
the number of image pixels in the horizontal and vertical directions respectively.
Define Gx(n) = Gy(n) = Rsx(n) = Rsy(n) = 2T (n). ThusG(n) = Rs(n) = 22T (n)

and Rd(n) = 2T (n) and we get our final upper bound on M ’s space: S(n) �
22T (n)22T (n)2T (n) = 25T (n). These adjustments do not affect M ’s computation,
we have simply defined M to be more time and space inefficient.
M ’s grid of images are represented by a single binary word G. The word G is

composed ofG(n) image subwords of equal length such that for each image i inM
there is an image subword Gi, and vice versa. Specifically G = G0G1 · · · GG(n)−1.
We order M ’s images first horizontally and then vertically; beginning with the
lower leftmost grid image, proceeding left to right and then bottom to top.

Next we show how each pixel in image i is represented in the image subword
Gi. This representation scheme is analogous to the previous representation of
images as subwords. The image subword Gi is composed of Rs(n) pixel subwords
of equal length, Gi = Gi[0]Gi[1] · · · Gi[Rs(n)−1]. For each pixel j in image i there
is a pixel subword Gi[j] and vice versa. Analogous to the image ordering, we
order the pixels in each image first by the horizontal and then by the vertical
direction, beginning with the lower leftmost pixel.

Given dyRange of Rd(n) it follows directly that the value (or range) of each
pixel in a C2-CSM configuration is from the set {0,± 1

2 ,±1,± 3
2 , . . . ,±Rd(n)}.

To represent this set as a set of binary words we use the 2’s complement binary
representation of integers, with a slight modification: the binary sequence is
shifted by one place to take care of the halves.

At this point we have defined the entire structure of the word G representing
M ’s grid. The length of G is |G| = Rs(n)G(n)�log(4Rd(n) + 1)�. Hence if M ’s
space complexity is O(S(n)) then |G| is also O(S(n)). We substitute to define
|G| in terms of time, |G| = 22T (n)22T (n)�log(4 ·2T (n)+1)�. Specifically the length
of each pixel subword is |Gi[j]| = �log(4 ·2T (n) +1)� and the length of each image
subword is |Gi| = 22T (n)�log(4·2T (n)+1)�. These expressions are useful for giving
bounds on circuit complexity in terms of time T (n).

A C2-CSM configuration 〈c, e〉 is represented as a binary word ctrlG, which
we write as (ctrl,G), where ctrl is of length 2T (n) and G is as given above. (We
interpret the ‘instruction pointer’ ctrl as a number that indexes the location of
the next C2-CSM operation).

4 Circuit Simulation of C2-CSM

To simulate the T (n) computation steps of the C2-CSM M we will design a
logspace uniform circuit cM that is of size SO(1)(n) and depth O(T 2(n)). We as-
sume that M is a language deciding C2-CSM [23, 20], and that the input word w
is of length n. M is simulated by the circuit cM in the following way. At the
first step of the simulation the circuit cM is presented with the input word
(ctrlsta,Gsta) that represents M ’s initial configuration (including M ’s input).
The circuit cM has T (n) identical layers numbered 0 (the input layer) to T (n)−1
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(the output layer). A layer contains a circuit cop for each C2-CSM operation op,
where the circuit encoding function 1n → cop is computable by a transducer
Turing machine in workspace log size(cop).

4.1 Circuits Computing +, ·, ∗, ρ, h and v

We begin by simulating the + operation. Addition of two nonnegative integers
written in binary is computable by an unbounded fan-in circuit of size O(m2)
and constant depth and so is an AC0 problem (e.g. use the well-known carry
look-ahead algorithm, for example see [8]). Hence this problem is also in NC1.
Krapchenko [9], and Ladner and Fischer [10] give tighter NC1 adders that have
depth O(logm) and lower the size bound to O(m).

Theorem 1 (circuit simulation of +). The C2-CSM operation + is simu-
lated by a logspace uniform circuit ca:=a+b of size O(22T (n)T (n)) and depth
O(log T (n)).

Proof. Circuit: To add two pixel words we use Ladner and Fischer’s NC1 addition
algorithm [10]. Extending this algorithm to work for the 2’s complement binary
representation is straightforward. Recall that the addition operation adds images
a and b in a parallel point by point fashion and places the result in a. The circuit
ca:=a+b has one adder subcircuit for each pixel j in a. Under the representation
scheme described above, pixel word Ga[j] is added to pixel word Gb[j], resulting
in a new word Ga′ [j]. There are Rs = 22T (n) pixels in each of a and b thus the
circuit ca:=a+b consists of 22T (n) parallel adders. Each adder has depth O(log p)
and size O(p) where p =

⌈
log(4 · 2T (n) + 1)

⌉
is pixel word length. Since each

adder has size O(T (n)), the circuit has size O(22T (n)T (n)). The circuit has depth
O(log p) = O(log T (n)).

Uniformity: We show that 1n → ca:=a+b is computable by a transducer that
uses at most log workspace. At any computation step the transducer will have
at most the encoding of the current gate and a constant number of counters
on its worktapes. The circuit has O(22T (n)T (n)) gates, thus each gate label has
length O(T (n)) and is computable in space log |ca:=a+b| = O(T (n)). There are
counters for the index of the current gate and for the current adder circuit.
Each adder circuit is logspace uniform and hence a constant number of [length
O(T (n))] counters, is sufficient to construct each one. All gates and counters are
computable in space log |ca:=a+b|. ��

As with addition there are NC1 circuits for multiplication of binary num-
bers [8], for example Schönage and Strassen’s circuit [16], which uses the DFT,
has size O(m logm log logm) and depth O(logm). Unlike addition, Furst, Saxe
and Sipser [5] showed that multiplication is not in AC0, by showing that parity
is not in AC0 [2]. The proof of the following theorem is identical to the previous
one except that we use a polynomial sized NC1 multiplication circuit as opposed
to the linear sized NC1 adder used above.

Theorem 2 (circuit simulation of ·). The C2-CSM operation · is simulated by
a logspace uniform circuit ca:=a·b of size O(22T (n)T 2(n)) and depth O(log T (n)).
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Each pixel in a C2-CSM is rational valued, hence the complex conjugation oper-
ation ∗ is the identity and is simulated by the identity circuit (¬¬ a).

Theorem 3 (circuit simulation of ∗). The C2-CSM operation ∗ is simulated
by a logspace uniform circuit ca:=a∗ of size O(22T (n)) and constant depth.

Theorem 4 (circuit simulation of ρ). The C2-CSM operation ρ is simu-
lated by a logspace uniform circuit ca:=ρ(a,zl,zu) of size O(22T (n)T 2(n)) and depth
O(log T (n)).

Proof. Circuit: First we build a circuit cu>v that tests if the number represented
by one pixel word is greater than another. It is straightforward to give constant
size and depth circuits that tell if two bits b1, b′ ∈ {0, 1} are equal and if one
is greater than the other: The circuits cb≡b′ and cb>b′ respectively compute the
≡ and > expressions b ≡ b′ = (b ∧ b′) ∨ (¬b ∧ ¬b′) and b > b′ = b ∧ ¬b′. On
pixel words u and v, we define the Boolean expression u > v =

∨|u−1|
m=0 ((um >

vm) ∧ (
∧m−1

k=0 (uk ≡ vk))). We build cu>v as follows. For each m the circuit
computing

∧m−1
k=0 (uk ≡ vk) is realised as a O(m) size, O(logm) depth tree. There

are |u| such trees, the root of each has a ∧ test with the constant depth circuit
for um > vm. We take the OR of these ANDs using a log |u| depth OR tree. The
circuit cu>v has size O(|u|2) and depth O(log |u|).

Using a similar construction we build the circuit cu<v, this has the same
complexity as cu>v. Moreover these circuits can be extended to work on the 2’s
complement representation with only a multiplicative constant increase in size
and additive constant increase in depth. We combine these circuits to create
the pixel thresholding circuit cv:=ρ(v,l,u) that evaluates to l if cv<l ≡ 1, to u if
cv>u ≡ 1, and to v otherwise.

Recall that the operation ρ(a, zl, zu) thresholds image a in a parallel point by
point fashion and places the result in a. The circuit ca:=ρ(a,zl,zu) has one pixel-
thresholding subcircuit for each pixel j in a. Pixel word Ga[j] is thresholded below
by pixel word Gzl [j] and above by pixel word Gzu [j] resulting in a new word Ga′ [j].
The circuit ca:=ρ(a,zl,zu) consists of 22T (n) parallel pixel thresholding subcircuits.
Each pixel thresholding subcircuit has O(log p) depth and size O(p2) where p =⌈
log(4 · 2T (n) + 1)

⌉
is pixel word length. Since there are 22T (n) pixel thresholding

subcircuits (each has size O(T 2(n))) the circuit has size O(22T (n)T 2(n)). The
entire circuit has depth O(log p) = O

(
log

⌈
log(4 · 2T (n) + 1)

⌉)
= O(log T (n)).

Uniformity: By stepping through the construction and applying the argu-
ments given in Theorem 1 it is seen that the length of each gate label is O(T (n))
and a constant number of variables is sufficient to construct the encoding. ��

Next we give simulations of the DFT operations via logspace uniform fast Fourier
transform (FFT) circuits. On input length m the FFT circuit has size bounded
above by 2m logm and depth bounded above by 2 logm [15].

Theorem 5 (circuit simulation of h and v). The C2-CSM horizontal (re-
spectively, vertical) DFT operation h (respectively, v) is simulated by a logspace
uniform circuit ca:=h(a) of size O(22T (n)T (n)) and depth O(T (n)).
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Proof. For each row of pixel words in image word a, the circuit ca:=h(a) has
a single FFT subcircuit. The output is an image word a′ such that each row
in a′ is the DFT of the same row in a. It is straightforward to verify the size,
depth and uniformity. The circuit ca:=v(a) that simulates the C2-CSM vertical
DFT operation v is constructed similarly to ca:=h(a), except we replace the word
“row” with “column”. ��

4.2 Circuits Computing ld and st

The simulations of ld and st are much more involved than the previous construc-
tions. We briefly sketch the simulations, details are to be found in [20].

Theorem 6 (circuit simulation of ld by ca:=[(ξ′
1,η′

1),(ξ′
2,η′

2)]). The C2-CSM
operation ld (ξ′1, η′1, ξ′2, η′1) is simulated by the uniform circuit ca:=[(ξ′

1,η′
1),(ξ

′
2,η′

2)]

of size O(26T (n)T (n)) and depth O(T (n)). This circuit takes as input the image
words ξ′1, η

′
1, ξ

′
2 and η′2, and outputs an image word a.

Proof (sketch). The address image words ξ′1, η
′
1, ξ

′
2, η

′
2 are decoded into four

binary number words by four circuits that respectively compute E−1
2T (n)(ξ′1) =

ξ1, E−1
2T (n)(η′1) = η1, E−1

2T (n)(ξ′2) = ξ2, E−1
2T (n)(η′2) = η2, where E−1

2T(n) is a function
that encodes the inverse of the logspace computable address encoding function
E from Definition 1.

In the next step we wish to select the ‘rectangle’ of image words that are to
be loaded to image word a. Suppose that the rectangle contains more than one
image, then näıvely copying the entire rectangle to the image word a would cause
problems. (The rectangle to be loaded may contain up to 24T (n) = Rs(n)G(n)
pixel words whereas the image word a should contain exactly 22T (n) pixel words).
However, observe that spatialRes is bounded above by 22T (n), thus the rec-
tangle to be loaded contains at most 22T (n) regions of distinct value (oth-
erwise image a would contain > 22T (n) pixels after execution of ld). Hence
we have to select only 22T (n) representative pixel words out of the total of
22T (n)(ξ2 − ξ1 + 1)(η2 − η1 + 1) � 24T (n) pixels. We choose the pixel with the
lowest index in each (possibly) distinct area. For each pixel word i in image word
a, the pixel j to be loaded is defined as j = col(i) + row(i)Rsx

Gx where col(i) =
(i mod Rsx

)(ξ2 − ξ1 + 1) +Rsx
ξ1 and row(i) =

⌊
i

Rsx

⌋
(η2 − η1 + 1) +Rsy

η1 and

as usual Rsy
= Rsy

= Gx = 2T (n).
For each i, a circuit computes the binary number j, the index of the pixel

we want to ‘load’, j is then passed to another circuit which selects pixel word
j from the grid word G. The output of the ith circuit represents the ith pixel in
image a after a ld operation. ��

So far each simulated operation affects only image a. The simulation of st
differs in that a rectangle of images defined by the coordinates (ξ1, η1) and (ξ2, η2)
is affected.

Theorem 7 (circuit simulation of st by c[(ξ′
1,η′

1),(ξ′
2,η′

2)]:=a). The C2-CSM
operation st (ξ′1, η

′
1, ξ

′
2, η

′
1) is simulated by a logspace uniform circuit
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c[(ξ′
1,η′

1),(ξ
′
2,η′

2)]:=a of size O(212T (n)T 6(n)) and depth O(T (n)). This circuit takes
as input the image words ξ′1, η

′
1, ξ

′
2 and η′2. It outputs a word of length |G| that

contains the rectangle (defined by (ξ′1, η′1), (ξ′2, η′2)) of image words to be stored
and zeros at all other positions.

Proof (sketch). Let i be the index of a pixel word in image word a. For each
i, the index j of each pixel word that will be stored to, satisfies j = (col(i) +
u) + (row(i) + v)Rsx

Gx for 0 � u � ξ2 − ξ1 and 0 � v � η2 − η1, where
Rsx = Gx = 2T (n) and col(i) and row(i) were given in the proof of Theorem 6.

The address image words ξ′1, η
′
1, ξ

′
2, η

′
2 are decoded into the binary numbers

ξ1, η1, ξ2, η2 (as in Theorem 6). Then for each i ∈ {0, . . . , 22T (n)} there is a
circuit cstPixel(i). The circuit cstPixel(i) consists of 24T (n) subcircuits, each tests
j = j′ for a unique pixel word j′ in G. Essentially cstPixel(i) generates a ‘mask’
word m, |m| = 24T (n). For the given i, mask m has the property that mj′ = 1
if and only if j′ is the index of a pixel word that is to be overwritten with pixel
word i from image word a.

Next, the circuit c[(ξ′
1,η′

1),(ξ
′
2,η′

2)]:=a uses i subcircuits as follows. For each pixel
word i in image word a: Subcircuit i ANDs the kth symbol in pixel word i with
each of the 24T (n) outputs of cstPixel(i). At this point we have i grid words; the
ith grid word is 0 everywhere except for the ‘rectangular’ part of the grid that
pixel i is stored to. These i grid words are ORed using an OR tree, giving the
final output grid word as defined in the theorem statement. This final output
word is a mask that contains the ‘stored rectangle’ and all other pixel words
contain only zeros. ��

4.3 Control Flow and Main Results

C2-CSM control flow is straightforward to simulate. Recall from Section 3 that
the binary word ctrl represents the C2-CSM control (or instruction pointer).
Simulating br involves finding a new value for ctrl from the br parameters.

Theorem 8 (circuit simulation of br by c br (ξ′,η′)). The C2-CSM branch
operation br (ξ′, η′) is simulated by a logspace uniform circuit c br (ξ′,η′) of size
O(22T (n)T (n)) and depth O(T (n)).

Proof. The circuit c br (ξ′,η′) decodes its address image word parameters into the
binary numbers ξ and η (as in Theorem 6) which are then translated into an
image word index i by evaluating ξ+ ηGx = i. Index i points to the image word
that encodes the next operation to be executed. ��

Let C(i) be an arbitrary C2-CSM configuration and let 4M be a relation on
configurations that defines the operational semantics of C2-CSM M [23, 20]. The
configuration C(i) is encoded as (ctrl(i),G(i)) as described in Section 3.

Theorem 9 (circuit simulation of C(i) 4M C(i+1) by cstep). Let M be a
C2-CSM. The uniform circuit cstep simulates C(i) 4M C(i+1) and is of size
O(212T (n)T 6(n)) and depth O(T (n)).
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Proof (sketch). The circuit cstep computes (ctrl(i),G(i)) → (ctrl(i+1),G(i+1)). A
control flow simulating circuit updates ctrl(i) using either c br (ξ′,η′) or a circuit
that simulates sequential control flow by incrementing ctrl(i) by one of {0, 1, 3, 5}
depending on the current operation. Another circuit updates G(i) by making
use of the circuits that were given earlier and special mask words to simulate
whatever C2-CSM operation is pointed to by ctrl(i). ��

Next we give the resource use for our circuit simulation of a C2-CSM.

Theorem 10 (circuit simulation of M by cM). Let M be a C2-CSM that
computes for time T (n). The logspace uniform circuit cM simulates M and is
of size O(212T (n)T 7(n)) and depth O(T 2(n)).

Proof. Circuit cM is the composition of T (n) instances of cstep from Theorem 9.
The circuit is given the initial configuration (ctrlsta,Gsta) of M as input. After
O(T 2(n)) parallel timesteps cM outputs a word representing the final configura-
tion of M . ��

The size bound in the previous theorem seems quite high, however one should
keep in mind that M has space of S(n) = O(23T (n)). (This was the original
space bound on M before we redefined space to suit our simulations).

If M is a language deciding C2-CSM [20, 23] we augment cM so that it ORs the
bits of the relevant output image word, thus computing a {0, 1}-valued function.
The resulting circuit has only a constant factor overhead in the size and depth
of cM . From this we state:

Corollary 1.
C2-CSM-TIME(T (n)) ⊆ U-SIZE,DEPTH(O(212T (n)T 7(n)), O(T 2(n)))

Let T (n), S(n) = Ω(logn). From the inclusion given by Equation (1) we state:

Corollary 2. C2-CSM-TIME(T (n)) ⊆ DSPACE(O(T 2(n)))

Combining the above result with the converse inclusion (given in [20, 22]) gives
a relationship between nondeterministic (sequential) space, C2-CSM time and
deterministic space.

Corollary 3. NSPACE(S(n)) ⊆ C2-CSM-TIME(O(S(n) + log n)4)
⊆ DSPACE(O(S(n) + logn)8)

To summarise, the C2-CSM satisfies the parallel computation thesis:

Corollary 4. NSPACE(SO(1)(n)) = C2-CSM-TIME(SO(1)(n))

This establishes a link between space bounded sequential computation and time
bounded C2-CSM computation, e.g. C2-CSM-TIME(nO(1)) = PSPACE.

The thesis relates parallel time to sequential space, however in our simulations
we explicitly gave all resource bounds. As a final result we show that the class of
C2-CSMs that simultaneously use polynomial space and polylogarithmic time
decide at most the languages in NC. Let C2-CSM-SPACE,TIME(S(n), T (n)) be
the class of languages decided by C2-CSMs that use space S(n) and time T (n).



Upper Bounds on the Computational Power of an Optical Model 787

For uniform circuits it is known [8] that U-SIZE,DEPTH(nO(1), logO(1) n) = NC.
From the resource overheads in our simulations:

C2-CSM-SPACE,TIME(2O(T (n)), T (n)) ⊆ U-SIZE,DEPTH(2O(T (n)), TO(1)(n)).

For the case of T (n) = logO(1) n we have our final result.

Corollary 5. C2-CSM-SPACE,TIME(nO(1), logO(1) n) ⊆ NC

In [20, 22] it was shown that the converse inclusion also holds. Thus C2-CSMs that
simultaneously use both polynomial space and polylogarithmic time exactly
characterise NC.

5 Discussion

We have given upper bounds on C2-CSM power in terms of uniform circuits.
Combining this with previously shown lower bounds [22]; the C2-CSM verifies
the parallel computation thesis and C2-CSMs with polynomial space and poly-
logarithmic time decide exactly the languages in NC.

Our simulations could probably be improved to get a tighter relationship be-
tween C2-CSM time and sequential space. For example, the size bounds on the
circuit simulation of ld and st could be improved with the aim of reducing the
degree of the polynomials in Corollary 3, maybe even to a quadratic. Any im-
provement beyond that would be difficult, since it would imply an improvement
to the quadratic bound in Savitch’s theorem. Such improvements would enable
us define a tighter bound on simultaneous resource usage between the C2-CSM
and (say) uniform circuits, in the hope of exactly characterising NCk by varying
a parameter k to the model.

By how much can we generalise the C2-CSM definition and still preserve the
upper bounds presented here? For example, in analogy with Simon’s result for
vector machines [17], we believe it should be possible to remove the O(23t) space
restriction from the C2-CSM definition.

Our results are the first to establish a general relationship (upper and lower
bounds) between optically inspired computation and standard complexity
classes. On a related note, our results show that the kind of optics modelled
by the C2-CSM is simulated in reasonable time on any of the parallel architec-
tures that verify the parallel computation thesis.
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