Skip to main content

Complexity of the Min-Max (Regret) Versions of Cut Problems

  • Conference paper
Algorithms and Computation (ISAAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3827))

Included in the following conference series:

Abstract

This paper investigates the complexity of the min-max and min-max regret versions of the st min cut and min cut problems. Even if the underlying problems are closely related and both polynomial, we show that the complexity of their min-max and min-max regret versions, for a constant number of scenarios, are quite contrasted since they are respectively strongly NP-hard and polynomial. Thus, we exhibit the first polynomial problem, st min cut, whose min-max (regret) versions are strongly NP-hard. Also, min cut is one of the few polynomial problems whose min-max (regret) versions remain polynomial. However, these versions become strongly NP-hard for a non constant number of scenarios. In the interval data case, min-max versions are trivially polynomial. Moreover, for min-max regret versions, we obtain the same contrasted result as for a constant number of scenarios: min-max regret st cut is strongly NP-hard whereas min-max regret cut is polynomial.

This work has been partially funded by grant CNRS/CGRI-FNRS number 18227. The second author was partially supported by the ACI Sécurité Informatique grant-TADORNE project 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aissi, H., Bazgan, C., Vanderpooten, D.: Approximation complexity of min-max (regret) versions of shortest path, spanning tree, and knapsack. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 862–873. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Aissi, H., Bazgan, C., Vanderpooten, D.: Complexity of the min-max and min-max regret assignment problem. Operations Research Letters 33, 634–640 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Armon, A., Zwick, U.: Multicriteria global minimum cuts. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 65–76. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Aron, I.D., Van Hentenryck, P.: On the complexity of the robust spanning tree with interval data. Operations Research Letters 32, 36–40 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Averbakh, I., Lebedev, V.: Interval data min-max regret network optimization problems. Discrete Applied Mathematics 138, 289–301 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Garey, M., Johnson, D.: Computers and intractability: a guide to the theory of NP-completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  7. Kouvelis, P., Yu, G.: Robust Discrete Optimization and its Applications. Kluwer Academic Publishers, Boston (1997)

    MATH  Google Scholar 

  8. Nagamochi, H., Nishimura, K., Ibaraki, T.: Computing all small cuts in an undirected network. SIAM Journal on Discrete Mathematics 10(3), 469–481 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Yaman, H., Karaşan, O.E., Pinar, M.C.: The robust spanning tree problem with interval data. Operations Research Letters 29, 31–40 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aissi, H., Bazgan, C., Vanderpooten, D. (2005). Complexity of the Min-Max (Regret) Versions of Cut Problems. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_79

Download citation

  • DOI: https://doi.org/10.1007/11602613_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30935-2

  • Online ISBN: 978-3-540-32426-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics