Abstract
We study network load games, a class of routing games in networks which generalize selfish routing games on networks consisting of parallel links. In these games, each user aims to route some traffic from a source to a destination so that the maximum load she experiences in the links of the network she occupies is minimum given the routing decisions of other users. We present results related to the existence, complexity, and price of anarchy of Pure Nash Equilibria for several network load games. As corollaries, we present interesting new statements related to the complexity of computing equilibria for selfish routing games in networks of restricted parallel links.
This work was partially supported by the European Union under IST FET Integrated Project 015964 AEOLUS.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahuja, R.K., Magnati, T.L., Orlin, J.B.: Network flows, Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)
Björklund, A., Husfeldt, T., Khanna, S.: Approximating longest directed paths and cycles. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 222–233. Springer, Heidelberg (2004)
Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure nash equilibria. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC 2004), pp. 604–612 (2004)
Feldmann, R., Gairing, M., Lücking, T., Monien, B., Rode, M.: Nashification and the coordination ratio for a selfish routing game. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 514–526. Springer, Heidelberg (2003)
Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The structure and complexity of nash equilibria for a selfish routing game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)
Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish unsplittable flows. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 593–605. Springer, Heidelberg (2004)
Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: Computing Nash equilibria for restricted parallel links. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC 2004), pp. 613–622 (2004)
Hochbaum, D.S., Shmoys, D.: A polynomial approximation scheme for scheduling on uniform processors: using the dual approximation approach. SIAM Journal on Computing 17(3), 539–551 (1988)
Kleinberg, J.: Single-source unsplittable flow. In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science (FOCS 1997), pp. 68–77 (1996)
Kolliopoulos, S., Stein, C.: Approximation algorithms for single-source unsplittable flow. SIAM Journal on Computing 31, 919–946 (2002)
Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)
Monterer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14, 124–143 (1996)
Nash, J.F.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)
Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2, 65–67 (1973)
Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM 49(2), 236–259 (2002)
Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM Journal on Applied Mathematics 38(3), 364–372 (1980)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Caragiannis, I., Galdi, C., Kaklamanis, C. (2005). Network Load Games. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_81
Download citation
DOI: https://doi.org/10.1007/11602613_81
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30935-2
Online ISBN: 978-3-540-32426-3
eBook Packages: Computer ScienceComputer Science (R0)