Skip to main content

Minimum Entropy Coloring

  • Conference paper
Algorithms and Computation (ISAAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3827))

Included in the following conference series:

Abstract

We study an information-theoretic variant of the graph coloring problem in which the objective function to minimize is the entropy of the coloring. The minimum entropy of a coloring is called the chromatic entropy and was shown by Alon and Orlitsky to play a fundamental role in the problem of coding with side information. In this paper, we consider the minimum entropy coloring problem from a computational point of view. We first prove that this problem is NP-hard on interval graphs. We then show that it is NP-hard to find a coloring whose entropy is within \(({1 \over 7} - \epsilon){\rm log} n\) of the chromatic entropy for any ε > 0, where n is the number of vertices of the graph. A simple polynomial case is also identified. It is known that the traditional graph entropy is a lower bound for the chromatic entropy. We prove that this bound can be arbitrarily bad, even for chordal graphs. Finally, we consider the minimum number of colors required to achieve minimum entropy and prove a Brooks-type theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accame, M., De Natale, F.G.B., Granelli, F.: Efficient labeling procedures for image partition encoding. Signal Processing 80(6), 1127–1131 (2000)

    Article  MATH  Google Scholar 

  2. Agarwal, S., Belongie, S.: On the non-optimality of four color coding of image partitions. In: Proc. IEEE Int. Conf. Image Processing (2002)

    Google Scholar 

  3. Alon, N., Orlitsky, A.: Source coding and graph entropies. IEEE Trans. Inform. Theory 42(5), 1329–1339 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs and non-approximability—towards tight results. In: 36th Annual Symposium on Foundations of Computer Science (Milwaukee, WI, 1995), pp. 422–431. IEEE Comput. Soc. Press, Los Alamitos (1995)

    Google Scholar 

  5. Brooks, R.L.: On colouring the nodes of a network. Proc. Cambridge Philos. Soc. 37, 194–197 (1941)

    Article  MathSciNet  Google Scholar 

  6. Cardinal, J., Fiorini, S., Van Assche, G.: On minimum entropy graph colorings. In: Proc. IEEE Int. Symposium on Information Theory, p. 43 (2004)

    Google Scholar 

  7. de Werra, D., Glover, F., Silver, E.A.: A chromatic scheduling model with costs. IIE Trans. 27, 181–189 (1995)

    Article  Google Scholar 

  8. de Werra, D., Hertz, A., Kobler, D., Mahadev, N.V.R.: Feasible edge colorings of trees with cardinality constraints. Discrete Math. 222(1-3), 61–72 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. J. Comput. Syst. Sci. 57(2), 187–199 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of coloring circular arcs and chords. SIAM J. Algebraic Discrete Methods 1(2), 216–227 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Academic Press, London (2004)

    MATH  Google Scholar 

  12. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization, 2nd edn. Algorithms and Combinatorics, vol. 2. Springer, Berlin (1993)

    MATH  Google Scholar 

  13. Halperin, E., Karp, R.M.: The minimum-entropy set cover problem. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 733–744. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Jansen, K.: Approximation results for the optimum cost chromatic partition problem. Journal of Algorithms 34, 54–89 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley Interscience, Hoboken (1995)

    MATH  Google Scholar 

  16. Kahn, J., Kim, J.H.: Entropy and sorting. J. Comput. Syst. Sci. 51(3), 390–399 (1995)

    Article  MathSciNet  Google Scholar 

  17. Marx, D.: A short proof of the NP-completeness of minimum sum interval coloring. Oper. Res. Lett. 33(4), 382–384 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Simonyi, G.: Perfect graphs and graph entropy. An updated survey. In: Perfect graphs. Wiley-Intersci. Ser. Discrete Math. Optim., pp. 293–328. Wiley, Chichester (2001)

    Google Scholar 

  19. Tucker, A.: An efficient test for circular-arc graphs. SIAM J. Comput. 9(1), 1–24 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  20. Witsenhausen, H.S.: The zero-error side information problem and chromatic numbers. IEEE Trans. Inform. Theory 22(5), 592–593 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhao, Q., Effros, M.: Low complexity code design for lossless and near-lossless side information source codes. In: Proc. IEEE Data Compression Conf. (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cardinal, J., Fiorini, S., Joret, G. (2005). Minimum Entropy Coloring. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_82

Download citation

  • DOI: https://doi.org/10.1007/11602613_82

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30935-2

  • Online ISBN: 978-3-540-32426-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics