Skip to main content

A ( \(2 - c{{1} \over {\sqrt{N}}}\))–Approximation Algorithm for the Stable Marriage Problem

  • Conference paper
Algorithms and Computation (ISAAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3827))

Included in the following conference series:

Abstract

We consider the problem of finding a stable matching of maximum size when both ties and unacceptable partners are allowed in preference lists. This problem is NP-hard and the current best known approximation algorithm achieves the approximation ratio \(2 - c{{\rm log N} \over {N}}\), where c is an arbitrary positive constant and N is the number of men in an input. In this paper, we improve the ratio to \(2 - c{{1} \over {\sqrt{N}}}\), where c is a constant such that \(c \leq {{1}\over{4\sqrt{6}}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, D.J., Cechlárová, K., Manlove, D.F., Mehlhorn, K.: Pareto optimality in house allocation problems. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 3–15. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings. In: Proc. SODA 2005, pp. 424–432 (2005)

    Google Scholar 

  3. Bansal, V., Agrawal, A., Malhotra, V.: Stable marriages with multiple partners: efficient search for an optimal solution. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 527–542. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted vertex cover problem. In: Analysis and Design of Algorithms for Combinatorial Problems. Annals of Disc. Math., vol. 25, pp. 27–46. Elsevier Science Publishing Company, Amsterdam (1985)

    Chapter  Google Scholar 

  5. Berman, P., Fujito, T.: On the approximation properties of independent set problem in degree 3 graphs. In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 449–460. Springer, Heidelberg (1995)

    Google Scholar 

  6. Canadian Resident Matching Service (CaRMS), http://www.carms.ca/

  7. Cechlárová, K.: On the complexity of exchange-stable roommates. Discrete Applied Mathematics 116, 279–287 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fleiner, T.: A fixed-point approach to stable matchings and some applications. Mathematics of Operations Research 28(1), 103–126 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Amer. Math. Monthly 69, 9–15 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discrete Applied Mathematics 11, 223–232 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gusfield, D., Irving, R.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, Boston (1989)

    MATH  Google Scholar 

  12. Halldórsson, M.M., Irving, R., Iwama, K., Manlove, D., Miyazaki, S., Morita, Y., Scott, S.: Approximability results for stable marriage problems with ties. Theoretical Computer Science 306, 431–447 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Halldórsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Randomized approximation of the stable marriage problem. Theoretical Computer Science 325(3), 439–465 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Halldórsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approximation of the stable marriage problem. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 266–277. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Halperin, E.: Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. In: Proc. SODA 2000, pp. 329–337 (2000)

    Google Scholar 

  16. Irving, R.: Stable marriage and indifference. Discrete Applied Mathematics 48, 261–272 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Irving, R.: Matching medical students to pairs of hospitals: a new variation on an old theme. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 381–392. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  18. Irving, R.W., Manlove, D.F., Scott, S.: The hospital/residents problem with ties. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 259–271. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Irving, R., Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Rank-maximal matchings. In: Proc. SODA 2004, pp. 68–75 (2004)

    Google Scholar 

  20. Irving, R.W., Manlove, D.F., Scott, S.: Strong stability in the hospitals/residents problem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 439–450. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Iwama, K., Manlove, D.F., Miyazaki, S., Morita, Y.: Stable marriage with incomplete lists and ties. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 443–452. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  22. Iwama, K., Miyazaki, S., Okamoto, K.: A (2 − c logN/N)-approximation algorithm for the stable marriage problem. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 349–361. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Japanese Resident Matching Program (JRMP), http://www.jrmp.jp/

  24. Karakostas, G.: A better approximation ratio for the Vertex Cover problem. ECCC Report, TR04-084 (2004)

    Google Scholar 

  25. Karpinski, M.: Polynomial time approximation schemes for some dense instances of NP-hard optimization problems. In: Rolim, J.D.P. (ed.) RANDOM 1997. LNCS, vol. 1269, pp. 1–14. Springer, Heidelberg (1997)

    Google Scholar 

  26. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Strongly stable matchings in time O(nm) and extension to the hospitals-residents problem. In: Proc. STACS 2004, pp. 222–233 (2004)

    Google Scholar 

  27. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. HOLT, RINEHART AND WINSTON (1976)

    Google Scholar 

  28. Le, T., Bhushan, V., Amin, C.: First aid for the match, 2nd edn. McGraw-Hill, Medical Publishing Division (2001)

    Google Scholar 

  29. Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of stable marriage. Theoretical Computer Science 276(1-2), 261–279 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Monien, B., Speckenmeyer, E.: Ramsey numbers and an approximation algorithm for the vertex cover problem. Acta Inf. 22, 115–123 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  31. Nagamochi, H., Nishida, Y., Ibaraki, T.: Approximability of the minimum maximal matching problem in planar graphs. Institute of Electronics, Information and Communication Engineering, Transactions on Fundamentals E86-A, 3251–3258 (2003)

    Google Scholar 

  32. Teo, C.P., Sethuraman, J.V., Tan, W.P.: Gale-Shapley stable marriage problem revisited: Strategic issues and applications. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 429–438. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  33. Zito, M.: Randomized techniques in combinatorial algorithmics. PhD thesis, Dept. of Computer Science, University of Warwick (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iwama, K., Miyazaki, S., Yamauchi, N. (2005). A ( \(2 - c{{1} \over {\sqrt{N}}}\))–Approximation Algorithm for the Stable Marriage Problem. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_90

Download citation

  • DOI: https://doi.org/10.1007/11602613_90

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30935-2

  • Online ISBN: 978-3-540-32426-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics