
Generic Relationships in Information Modeling �

Mohamed Dahchoury Manuel Kolpz Alain Pirottex Esteban Zim�anyi{

Abstract

Generic relationships are powerful abstraction mechanisms that help in better organizing infor-

mation during the analysis phase of problem resolution. Recent research in conceptual modeling has

studied new generic relationships that naturally model complex situations whose semantics escapes

direct representation with classical relationships (generalization, classi�cation, and aggregation). For

full bene�t, these relationships should be made available in object languages and systems as prim-

itives for developing conceptual models of applications. Unfortunately, only classical relationships

are supported by popular object models and existing implementations fail to accurately capture the

semantics of other generic relationships. This paper characterizes the common semantics of generic

relationships, presents some important generic relationships, and reviews several mechanisms for

implementing generic relationships, with a particular emphasis on metaclasses.

Keywords: Object Orientation, Generic Relationships, Metaclass, Conceptual Modeling

1 Introduction

Conceptual modeling is the activity of creating abstract representations of some aspects of physical and

social systems and their environment. Conceptual models are typically built in the early stages of system
development, preceding design and implementation. But conceptual models can also be useful even if no
system is contemplated: they then serve to clarify ideas about structure and functions in a perception of
a part of the world.

Advances in conceptual modeling involve narrowing the gap between concepts in the real world and

their representation in conceptual models by identifying powerful abstractions allowing to better represent

application semantics (see, e.g., [KR94, Mat88, MPM92, Myl98, PMD95, PT88, YM94]). Thus, more
powerful conceptual models help improve the mastering of the software development process and the

quality of the �nal products.

Generic relationships in object and semantic models are such powerful abstraction mechanisms. They
are high-level templates for relating real-world entities. Well-known generic relationships include gen-

eralization, classi�cation, and aggregation. Recent research on conceptual modeling has studied other
generic relationships like materialization, ownership, role, grouping, viewpoint, and generation. These
generic relationships naturally model phenomena typical of complex application domains whose semantics

escapes direct representation with classical relationships.
Over a 30-year period, the �eld of software development has witnessed a shift of emphasis from issues

in programming (e.g., structured programming) to issues in design (e.g., speci�cation) to issues in analysis
(e.g., requirement engineering). The object paradigm has demonstrated promises of improvement through
data abstraction, encapsulation, modularity, exibility, extensibility, and reuse.

Object-oriented programming languages have dominated the early years of object technology and
their inuence still clearly permeates the area. Their treatment of relationships as little more than

�This work is part of the YEROOS (Yet another Evaluation and Research on Object-Oriented Strategies) project,

principally based at the University of Louvain. See http://yeroos.qant.ucl.ac.be.

yUniversity of Louvain, IAG School of Management, B-1348 Louvain-la-Neuve, Belgium, e-mail: dahchour@qant.ucl.ac.be

zUniversity of Toronto, Department of Computer Science, M5S 3G4 Toronto, Canada, e-mail: mkolp@cs.toronto.edu

xUniversity of Louvain, IAG School of Management, B-1348 Louvain-la-Neuve, Belgium, e-mail: pirotte@info.ucl.ac.be

{University of Brussels, Department of Informatics, CP 165/15, 1050 Brussels, Belgium, e-mail: ezimanyi@ulb.ac.be

1

pointer-valued attributes has con�ned relationships to a second-class status in most database manage-
ment systems and, to a lesser extent, in software development methods. Thus, except for generalization,
classi�cation, and a version of aggregation, usual object models do not directly support generic relation-

ships. Consequently, users are left with ad hoc implementation techniques, like pointers or references,
with problems of dispersion and duplication of information among several participants. Still, it has
been clear for some time (see, e.g., [Rum87]) that promoting relationships to a more independent status
provides bene�ts concerning reusability, ease of modeling, independence from implementation choices of
speci�c systems, control of redundancy, and facility of updates and maintenance.

The rest of the paper is organized as follows. Section 2 analyzes the concept of generic relationships
and characterizes their common semantics. Section 3 is a review of some important generic relationships
that illustrates how they contribute to enhance the expressiveness of information models. Section 4
discusses issues concerned with the identi�cation and de�nition of new generic relationships. Section 5
reviews several mechanisms for implementing generic relationships, namely pointers or references, layers,
parameterized classes, and mainly metaclasses. Metaclasses allow to capture structure and behavior
associated with a generic relationship independently of speci�c application classes participating in it. The
semantics is de�ned once and for all in a structure of metaclasses, that provide for de�ning and querying
the relationship, creating and deleting instances of participating classes, and so on. The interaction of
generic relationships is also discussed, that is, how to handle the participation of the same class in several

relationships. Section 6 summarizes and concludes the paper.

2 Generic Relationships

2.1 Relationships

A relationship models an association between two or more real-world entities. The number of object

classes involved in a relationship is the degree of the relationship. Most relationships have a small degree,
i.e., they are binary or ternary. This reects the concept formation strategy of human thinking.

Relationships at the conceptual level are not oriented, e.g., binary relationships are bidirectional.

Roles are sometimes de�ned for privileging traversal paths: a binary relationship is thus viewed as two
equivalent unidirectional relationships. Roles become essential when the same class participates several

times in the same relationship.

Instances of relationships are also called tuples in the relational model and links in object models.
A link thus represents an association among several real-world objects. Similar links are abstracted as
relationships (or relationship types or classes) among classes in the same way that similar objects are
abstracted into classes.

2.2 Generic relationships

Relationships can be classi�ed as generic or speci�c. Generic relationships are high-level templates for
relating classes. Well-known examples are generalization (of pattern Superclass�|Subclass), classi�cation
(of pattern Class <- - -Instance), and aggregation (of pattern Whole �|Part).

A speci�c relationship is a realization of a generic relationship in a particular application, like
Vehicle�|Car (a speci�c generalization) or Car�|Body (a speci�c aggregation). Thus, a generic re-
lationship abstracts all speci�c relationships of a given kind and it can be viewed as a metarelationship.

A number of other generic relationships have been studied. The following ones are reviewed in more
detail in Section 3:

� materialization relates a class of categories (e.g., models of cars) and a class of more concrete objects
(e.g., individual cars);

� ownership relates an owner class (e.g., persons) and a property owned (e.g., cars);
� aggregation forms composite objects (e.g., car) from component objects (e.g., body and engine);
� role relates an object class (e.g., persons) and a role class (e.g., employees), describing dynamic

states for the object class;
� grouping relates a member class (e.g., players in a team) and a grouping class (e.g., teams);

� viewpoint represents partial information about a class viewed from a particular standpoint;
� generation represents processes that lead to the emergence of new output entities from input entities.

2

This list is not exhaustive. For example, the following relationships have not been included, for lack of
space: versioning [AHLP95, AHPZ96, Kat90], that relates an object class and its time-varying versions,
modeling various states of the object class; realization [LM96], a variant of classi�cation that allows an

object to add structure to that de�ned by its class; transition [HG91], that forms (target) object classes
from other (source) object classes by changing instances of the source class into instances of the target
class.

Notations. We use UML notations to specify classes, objects/instances, associations, generalization,
instantiation, and aggregation. We add the notations \ � � ��", \ !Æ", \ !!", \ |{�", and \ =)" to
specify, respectively, the ownership, role, grouping, viewpoint, and generation relationships. Also, we �nd
more intuitive and expressive to the traditional (min,max) notations for cardinalities (e.g., (0,n), (1,1))
than those of UML.

2.3 Semantics of generic relationships

Generic relationships have several important characteristics:

� Class and instance semantics. The semantics of generic relationships concerns both classes and

instances of these classes. Consequently, comprehensive semantics must deal with both the class

level and the instance level in a coordinated manner.

As an example, the semantics of generalization at the class level states that:

{ a class can have several superclasses and several subclasses;
{ subclasses are mutually exclusive;

{ each class inherits all properties and methods of its superclasses;

{ conicts induced by multiple inheritance are avoided with a speci�ed strategy;
{ each class has a (1,1) cardinality regarding each of its superclasses and a (0,1) cardinality

regarding each of its subclasses.

At the instance level, the generalization relationship expresses the following semantics:

{ an instance of a class is also an instance of all its superclasses;

{ an instance of a class A cannot be an instance of another class that is not direct or indirect
superclass of A1;

{ an instance cannot have additional properties than those of its class2.

� Cardinality constrains the number of objects related by a relationship. Cardinalities are usually
represented as pairs of integers associated with each class participating in the relationship; they

indicate the minimum and the maximum number of instances of the relationship that each object of
the class can participate in. For instance, for generalizations: SubClass (1,1)|�SuperClass (0,1), for
materializations: AbstractClass (0,n)|�ConcreteClass (1,1), for roles: RoleClass (1,1)!ÆObjectClass
(0,n). In the above examples, the cardinality (0,n), where n stands for an arbitrarily large integer,
can be further constrained by application semantics. Various dependencies with special names
(e.g., mandatory or optional participation) are based on special values of minimal or maximal
cardinalities.
� Composition. Generic relationships can be involved in compositions, where a class plays several
roles of the same generic relationship R in several speci�c relationships based on R, as schematized in
Figure 1(a). An example of composition of generalizations is Person�|Student�|GraduateStudent,
where Student is at the same time a superclass of GraduateStudent and a subclass of Person. Simi-
larly, in the composition of aggregations Car �|Body �|Door, Body is at the same time a composite
of Door and a component of Car.
� Transitivity can follow from composition. For example, generalization is transitive: the general-
izations Person �|Student �|GraduateStudent imply Person �|GraduateStudent. However, not all
generic relationships that can be composed are transitive. For example, aggregation is not transitive

in general.

1This is possible in models allowing multiple classi�cation, like Telos [MBJK90], where an object can be an instance of

several classes not related, directly or indirectly, by the generalization link.

2This restriction is overcome with the realization relationship [LM96].

3

� Multiplicity.3 A role in a generic relationship is said to be multiple if the same class can participate
with that role in several realizations of the generic relationship. Figure 1(b) shows an example of
multiplicity for role r1. Most generic relationships allow multiplicity in each role. For example, with

generalization, a class can have several superclasses and several subclasses. Also, with aggregation,
a composite can have several components and a component can be part of several composites.

r2
A3

A1 A2

A1 A2

A3

(b)

(a)

r2Rr1 r1 R

Rr1

R
r1

r2

r2

Figure 1: Composition (a) and multiplicity (b) of relationships.

� Exclusiveness and sharing concern generic relationships with the multiplicity property for a
role. In Figure 1(b), role r1 is said to be exclusive if relationship R enforces the restriction that an
instance of A1 can be related to only one instance of A2 or A3. Role r1 is shared if relationship R
puts no restrictions on the number of instances of A2 and A3 that a given instance of A1 can be

related to via R.
For example, in the aggregations Proceedings�|Article|�Journal and

Newspaper�|Article|�Compilation, Article plays an exclusive role in the former and a shared role

in the latter, if the same article cannot appear both in conference proceedings and in a journal,
while it can appear at the same time in a newspaper and in a compilation.
� Existence dependency characterizes whether or not an object can exist independently of related
objects. Existence dependency reexpresses cardinality information by stating whether or not the

existence of some objects depends on the presence of other objects. Existence dependency is often

formulated in terms of propagation of deletion operations. Typical cases include the following:

{ the deletion of an object has no e�ect on related objects;

{ the deletion of an object implies the deletion of related objects even if they are involved in

other relationships;
{ the deletion of an object implies the deletion of related objects only if they are not involved

in other relationships;
{ the deletion of an object is prohibited if it is related to at least one object that is not explicitly
deleted.

� Attribute inheritance and value propagation. Most generic relationships allow propagating

structure and behavior from one participant to another. This is carried out by inheritance or by
delegation [Lie86]. In some cases, propagation is unidirectional. For example, in generalization,
subclasses inherit attributes and methods from superclasses. In aggregation, composites can access

some properties of their parts (and vice versa) by delegation; for example, Car inherits the color
attribute of its component Body.

3 A Review of Some Generic Relationships

This section presents some generic relationships. In the �gures, classes are drawn as rectangular boxes
and instances as rectangular boxes with rounded corners. Classi�cation links appear as dashed arrows

and generalization links as solid arrows.

3.1 Materialization

Materialization [GS94, PZMY94] is a binary relationship with pattern Abstract|�Concrete relating a class
of categories to a class of more concrete objects. In the example of Figure 2, CarModel is the abstract class
of the materialization and Car is its concrete class. CarModel represents information typically displayed

3This de�nition of multiplicity should not be confused with its use, by some authors, as a synonym of cardinality.

4

name: string
stickerPrice: integer
#doors: {integer}
engineSize: {integer}
autoSound: {string}
specialEquip: {string}

CarModel

*
 owner: string

 manufDate: date
 serial#: integer

Car

(0,n) (1,1)

Figure 2: An example of materialization.

in the catalog of car dealers, while class Car represents information about individual cars. Figure 3 shows
an instance FiatRetro of CarModel and an instance Nico's Fiat of Car, of model FiatRetro.

 name= FiatRetro
 stickerPrice=10.000

 autoSound={tape, radio}
 specialEquip= {airbag, alarm, cruise}

 stickerPrice= 10.000
 name = FiatRetro

 #doors= 3
 engineSize= 1200

airbag=Acme
 autoSound= {tape, radio}

alarm=Burglar_King
cruise= Fiat

 manufDate= 1/1/95
 serial#= 123
 owner= Nico

 engineSize={1200,1300}
 #doors={3,5}

FiatRetro

Nico’s Fiat

Figure 3: Instances of CarModel and Car classes from Figure 2.

Cardinality. Intuitively, the materialization CarModel|�Car means that every concrete car (e.g., Nico's
Fiat) has exactly one model (e.g., FiatRetro), while there can be any number of cars of a given model.

Most real-world examples of materialization have cardinality (1,1) on the side of the concrete class

and cardinality (0,n) on the side of the abstract class, although the latter cardinality can be further
constrained.

Attribute propagation. Some information in a concrete instance is naturally viewed as obtained from
its associated abstract instance. As illustrated in Figure 3, attributes of instances of CarModel and Car
can be related in three di�erent ways.

� Nico's Fiat directly inherits the name and stickerPrice of its model FiatRetro; this is called Type1
attribute propagation.
� Nico's Fiat has attributes #doors, engineSize, and autoSound whose values are selections among
the options o�ered by multivalued attributes with the same name in FiatRetro; this is called Type2
attribute propagation. For example, the value f1200,1300g of engineSize for FiatRetro indicates that
each FiatRetro car comes with either engineSize = 1200 or engineSize = 1300 (e.g., 1200 for Nico's
Fiat).
� The value fairbag, alarm, cruiseg of attribute specialEquip for FiatRetro means that each car of model
FiatRetro comes with three pieces of special equipment: an airbag, an alarm system, and a cruise
control system. Thus, Nico's Fiat has three new attributes named airbag, alarm, and cruise, whose
suppliers are, respectively, Acme, BurglarKing, and Fiat. Other FiatRetro cars might have di�erent
suppliers for their special equipment. This mechanism is called Type3 attribute propagation.

In addition to those attributes propagated from FiatRetro, Nico's Fiat has a value for attributesmanufDate,
serial#, and owner of Car.

Composition. Materializations can be composed in hierarchies, where the concrete class of one ma-
terialization is also the abstract class of another materialization. The example of Figure 4 deals with

theater Plays written by an author, with a title and a set of main roles. Plays materialize as Settings

5

author: string

title: string

roles: {string}

Play

troupe: string

season: string

director: string

Setting

* * theatre: string

Performance

#attend: integer

date: dateType

Figure 4: Composition of materializations.

that embody the production decisions for a theatrical season: a troupe, a director, and a set of actors for
each role of each play at the repertoire of that season. Settings materialize in turn as Performances, at
a particular date, with each role of Play assigned to a speci�c actor for each Performance. Such compo-
sitions of materializations are transitive. Thus, in the example, Play |�Setting |�Performance implies
Play |�Performance.

Abstract classes can materialize into several concrete classes. For example, in a movie rental applica-
tion, class Movie materializes independently into classes VideoTape and VideoDisc, i.e.,
VideoTape�|Movie|�VideoDisc. Also, concrete classes can be materializations of several abstract classes,
as in Play|�Movie�|Novel.

Dependency. In a materialization, the deletion of an abstract instance induces the deletion of its

associated concrete instances. In the materialization of Figure 2, when model FiatRetro is deleted, all

instances of Car associated to that model (e.g., Nico's Fiat) are also deleted.
On the other hand, the deletion of a concrete instance induces the deletion of its associated abstract

instance only if the minimal cardinality of the abstract side of the materialization is 1. For example,
if, in CarModel|�Car, the minimal cardinality of CarModel is 1, meaning that a car model has at least

one concrete car associated to it, then the deletion of the last car of a model implies the deletion of that

model.

Materialization semantics. The semantics of materialization is de�ned as a combination of gen-

eralization, classi�cation, and of a class/metaclass correspondence. This is expressed as a collection of

two-faceted constructs , each one being a composite structure comprising an object, called the object facet ,
and an associated class, called the class facet .

Cars Cars
Wild_2CV_FiatRetro_

CarCarModel

FiatRetro Wild_2CV

object facet
class facet

object facet

Nico’s Fiat Guy’s 2CV

*

class facet

: instanceOf
: generalization

Figure 5: Semantics of the materialization in Figure 2.

As shown in Figure 5, FiatRetro, an instance of CarModel, is an object facet whose associated class
facet FiatRetro Cars, a subclass of Car, describes all instances of Car with model FiatRetro. Wild2CV is
another instance of CarModel whose associated class facet is Wild2CV Cars.

Thus, the semantics of materialization induces a partition in the instances of the concrete class Car
into a family of subclasses (such as FiatRetro Cars and Wild2CV Cars), each corresponding to an instance

of the abstract class. These subclasses inherit attributes from the concrete class through the classical
inheritance mechanism of generalization. In addition, attributes of the object facet are propagated to
the associated class facet in three di�erent ways as explained above. Concrete instances, such as Nico's
Fiat and Guy's 2CV, with attribute values propagated from their corresponding instance of CarModel, are
ordinary instances of the subclasses of Car.

Of course, only application classes, like CarModel and Car, appear in conceptual schemas. The two-
faceted construct machinery, making explicit the semantics of materialization and the propagation of

6

attributes, is invisible to external users. For users, Nico's Fiat is an instance of Car, with an instantiation
mechanism that integrates attribute propagation.

3.2 Ownership

firstName
lastName

netBalance
 address

 Person

number
type

balance
 creditLimit

BankAccount

 ownership

Figure 6: An example of ownership.

Ownership [HPYG95, YHGP94] is a binary relationship with pattern Property� � ��Owner relating an
owner and a property that is owned. In the example of Figure 6, Person is the owner class and BankAccount
is the property class.

Intuitively, ownership means that the owner of a property has certain rights on the property. Various
shades of ownership express the intuitive semantics of the relationship. Thus, the owner can be a person

or a legal entity (e.g., a corporation or an organization). Property ownership can be temporary or
permanent. A property can be real (e.g., a piece of land), intellectual (e.g., an idea, a creative work, a

patent), or personal.

Cardinality. In general, ownership constrains a property to have at least one member whereas an owner
may have 0 or several properties. In the example of Figure 6, a person can have (0,n) bank accounts and

a bank account can have (1,n) owners.

Value propagation. Some features of a property are naturally viewed as features of its owner or vice

versa. For example, the address of persons may be modeled as the address of their house rather than as
an attribute of persons. Likewise, the name on a passport can be modeled as the name of the passport

owner. In the former case, the value of address is propagated upwards from the property to the owner.
In the latter case, the value of name is propagated downwards from the owner to the property. In a

transformational value propagation, the value of the propagated attribute results from a transformation

of values from several objects linked through ownership. For example, in Figure 6, attribute netBalance
of a person is computed as the sum of the balance of the person's bank accounts.

Composition. Ownership can be composed where the property of one ownership is also the owner of

another ownership, as in Corporation �� � �Division �� � �Factory.
Ownership allows multiplicity for both the property and the owner roles. Thus, owner classes can

own several properties as in Vehicle� � ��Person�� � �House. Also, a property class can be owned by several

owners as in Person�� � �Stock� � ��Company. Ownership can be recursive: for example, a company can
own other companies.

Exclusiveness. Ownership can be exclusive or joint, i.e., a property may be owned by one owner or
shared by several owners. Person�� � �Retirement Portfolio is an example of exclusive ownership.

There are two types joint ownerships. Free joint ownership states no explicit partition of the rights
of the joint owners in the property. For example, a joint bank account is freely shared by a couple. In

percentage joint ownership, each owner takes a percentage of the ownership, e.g., when husband and wife
each own 50% of their house. An equal joint is when all owners have the same percentage. As noted

in [HPYG95], percentage joint is unique to ownership, while exclusiveness also concerns other generic
relationships,

Dependency. The deletion of a property can cause the deletion of its owner. For example, suppose

that an insurance company distinguishes people who own cars from people who do not. This can be
modeled by a class Person with a subclass CarOwner and an ownership CarOwner�� � �Car. In this case,

7

the car owner is dependent on the car, i.e., if a car owner owns only one car and this car is deleted, then
the car owner should be deleted from class CarOwner (but not from class Person).

An example of dependency of the property on the owner is an ownership Employee�� � �Car with an

additional constraint stating that, when employees stop working for the company, the information about
their cars is no longer needed.

3.3 Aggregation

Aggregation (e.g., [HGP98, KBG89, KP97, MP96, MPK96, WCH87]) is a binary relationship with pattern
Composite�|Component by which a relationship between objects is considered a higher-level (aggregate)
object. Other names for aggregation are part-whole or simply part relationship. For example, Figure 7
shows two aggregations between composite Newspaper and components Editorial and Article.

Editorial

nb_of_words
date

Newspaper

title
publisher

nb_of_words
 date nb_of_words

Article(0,n)(0,1)

Figure 7: Examples of aggregation.

Cardinality. For the composite role, cardinality determines how many components can be grouped

together to form a composite. For example in Figure 7, a newspaper is composed of (1,n) articles. For
the component role it speci�es the number of composites that a component can be part of. This is related

to exclusiveness (see below).

Value propagation. Some features of a whole are viewed as features of its parts and vice versa. Thus,

there are two kinds of value propagation: upward propagation from the part class to the whole class and
downward propagation from the whole class to the part class. For example, in Car�|Body, the color of
a car can be propagated upwards from its corresponding body. Similarly, in Newspaper�|Article, the
date of articles is propagated downwards from their corresponding newspaper. Furthermore, the value

of a propagated attribute can be obtained as a combination of values from several source objects. For

instance, the color of a car's body can be de�ned as some combination of the colors of its panels.

Composition. Aggregations can be composed in hierarchies, where the component class of one aggre-

gation is also the composite class of another aggregation as in Building�|Room�|Wall.
Aggregation allows multiplicity for both the composite and the component roles. Figure 7 shows an

example of multiplicity for the composite role. An example of multiplicity for the component role is

Journal�|Article|�Compilation where an article can be included in a journal or in a compilation. Also,
aggregations can be recursive: a typical example is that of part-subpart in assemblies, where parts are
composed of other parts.

Aggregation is not transitive in general. A counterexample is that Hand |�Musician |�Orchestra
does not imply Hand |�Orchestra.

Exclusiveness. Aggregations can be exclusive and shared. A shared aggregation puts no restrictions
on the number of composites that a given component can be part of, allowing the component to be shared.

An example is Compilation�|Article if the same article can be included in any number of compilations.
An exclusive aggregation enforces the restriction that a given component can be part of only a single

composite. Exclusiveness is quite natural with physical assemblies. Thus, in Car�|Engine, two cars
cannot share the same engine. This kind of exclusiveness is called class exclusiveness as it enforces the
exclusive reference constraint within a single class. It is also the case that a car and, say, an airplane

cannot share the same engine. This type of exclusiveness is called global exclusiveness since it bears on
the entire database.

8

Dependency. The lifetime of parts sometimes depends on that of their wholes and conversely. The
part-to-whole dependency means that the existence of a part depends on the existence of the corre-
sponding whole, that is, that the deletion of the whole implies the deletion of the part. As an example,

Journal�|Article is part-to-whole dependent if the deletion of a journal implies the deletion of its arti-
cles. The whole-to-part dependency means that the existence of a whole depends on the existence of the
corresponding part, that is, the deletion of the part implies the deletion of the whole.

3.4 Role Relationship

Person

name: String
address: String

 phone: Integercourses: {String}

Student

univ: String

major: String
stud#: Integer

Employee

depart: String
emp#: String
function: String

 salary: Integer

Figure 8: Examples of roles.

Role [ABGO93, CZ97, KZ98, EPdOVdC+94, GSR96, RHS95, WDJS95, WCL97] is a binary relation-
ship with pattern ObjectClassÆ RoleClass relating a class of evolving objects and a class of roles that
those objects can play. Figure 8 shows two role relationships relating an object class Person, and role

classes Student and Employee. In a role relationship, the object class de�nes permanent properties of

an object while each role class de�nes a set of properties characterizing a particular aspect in which an
object can be viewed during its lifetime. The idea is that the role relationship captures the temporal and

evolutionary aspects of real-world objects, while the usual generalization relationship deals with their

static aspects. Thus, while classes Male and Female may be linked to Person via generalization links,
Student and Employee would rather be linked to Person via role links.

Figure 9 shows, on some instances of the schema of Figure 8, how persons may gain and/or lose roles.
In Figure 9(a), John p is created as instance of Person. Figure 9(b) shows an instance John s of Student,
related to John p by the role relationship, expressing that John p has become a student. Both instances

John p and John s coexist with di�erent identi�ers. If John leaves the university, the instance John s will
just be removed. In Figure 9(c), John p gained an additional role John e, i.e., he became an employee.

John_s

courses={c1,c2}
major=Info
stud#=355
univ=UCL

John_s

courses={c1,c2}
major=Info
stud#=355
univ=UCL

John_p

address=Louvain
phone=304050

name=John

Person

Student Employee

Person

Student
Person

(b)

John_e

(c)

(a)

John_p

address=Louvain
phone=304050

name=John

John_p

address=Louvain
phone=304050

name=John

salary=$20.000
function=Prof
emp#=100
depart=CS

Figure 9: Various roles of an object.

Cardinality. Each instance of a role class (e.g., Student) is related to exactly one instance of its object
class (e.g., Person) but, unlike generalization, each instance of the object class can be related to any

number of instances of the role class, depending on the maximal cardinality at the side of the object
class. For example, John can be at the same time a student in more than one university and an employee
in more than one department.

Value propagation. Role classes are not introduced for sharing information. This should rather be
the responsibility of subclassing. If Student is viewed as a subclass of Person, it inherits all properties and
methods from Person. Viewed as a role class of Person, Student does not inherit properties and methods

9

of Person. Instead, instances of role classes access properties and methods of their corresponding objects
by delegation.

Composition. Role relationships can be composed in hierarchies, where the role class of one role is

also the object class of another role. For example, Figure 10 shows a role class Employee with two role
classes Professor and UnitHead.

The role relationship allows multiplicity for both the object and the role classes. Figure 8 shows an ex-
ample of multiplicity for the object class. An example of multiplicity for the role class is
StudentÆ Councilor!ÆFaculty where both students and faculty can play the role of councilors in the
university council. However, the role relationship cannot be recursive.

The role relationship is transitive: for role classes R1, R2, and object class O, R1!ÆR2!ÆO implies
R1!ÆO.

Dependency. The lifetime of roles depends on that of objects playing those roles. Thus, the deletion
of an object induces the deletion of its associated roles. In Figure 9(c), if object John p is deleted,
its associated roles John s and John e are also deleted. Also, the deletion of a role can induce the

deletion of its associated object if the minimal cardinality of the object class is 1. For example, if Person
(1,n)Æ (1,1)Employee, meaning that a person plays at least once the employee role, then the deletion of
the last employee role implies the deletion of that person.

Modeling with roles. Roles address three kinds of issues arising when modeling evolving entities with
traditional object models:

(1) Object migration, i.e., objects dynamically changing their classi�cation. For example, upon grad-

uation, a person ceases to be a student and becomes an alumnus. An evolution is the case where
the transition object ceases to be an instance of the source class, while in an extension, the object

remains an instance of the source class.

(2) Multiple instantiation of the same class, i.e., an object becoming an instance more than once of
the same class, while losing or retaining its previous membership. For example, a student may be

registered in two di�erent universities.
(3) Context-dependent access, i.e., the ability to view a multi-faceted object in particular perspectives.

For example, person John can be viewed as an employee or as a member of the golf club.

Interaction between generalization and role. The same class C can be at the same time a role

class for another class O1 (i.e., C!ÆO1) and a superclass for class O2 (i.e., C�|O2).
Figure 10 illustrates interactions between generalization and role relationships. Class Person is sub-

classed by classes Male and Female since, e.g., an instance of Male cannot migrate to class Female. Class
Male has a role class Draftee accouting for males serving on military duty. Class Person is re�ned by
role classes Student and Employee. Student is subclassed by ForeignStudent and CountryStudent, since
an instance of ForeignStudent cannot become an instance of CountryStudent nor conversely. Class Coun-
tryStudent gathers together those students whose original nationality is that of the host country. Class
Employee has two role classes, Professor and UnitHead. This is an example of compositions of roles.

EmployeeMale Female Student

UnitHeadProfessorCountryStudentDraftee ForeignStudent

Person

Figure 10: Generalization and role hierarchies.

10

Role control speci�cation concerns how objects may evolve by gaining and/or losing roles. The
notion of meaningful combination of role classes, inspired from the migration control of [LD94], allows
to constrain the legal combinations of roles for an object. For example, if Person has roles Employee and
Retired, employees can acquire the role of retirees, but not the converse. Several styles of such object life
cycle diagrams are discussed in [WDJS95].

Transition predicates (similar to the predicates associated with category classes [Odb94]) describe
necessary and/or suÆcient conditions on how objects playing roles of R1 may explicitly or automat-
ically acquire roles within R2, if (R1, R2) is a meaningful combination of roles. For example, for

Teenager!ÆPersonÆ Adult, a transition predicate age�18 associated with Teenager means that when
an instance of Teenager satis�es the predicate, it becomes an instance of Adult.

3.5 Grouping

president : TennisPlayer
instructor : TennisPlayer

avgAgeOfMembers = value

Tennis Club
members

attributes
name : String
fee : Integer
#OfMembers : Integer

clients : {TennisPlayer}SSN : Integer
name : String

address : String

Tennis Player

league-level : Integer

 grouping

Figure 11: An example of grouping.

Grouping [Bro81, MPS95], with pattern MemberClass!!SetClass, is a generic relationship by which
a collection of set members is considered as a higher-level set object. Figure 11 shows an example of

grouping between a member class TennisPlayer and a set class TennisClub.
The SetClass in a grouping has a set-determining attribute, whose value is the set of members. It has

a number of set-describing attributes and/or constraints.

In Figure 11, SetClass TennisClub gathers three attributes grouped under label members. Label
attributes gathers two ordinary attributes, name and fee, and two set-describing attributes, #OfMembers
holding the current number of club members and avgAgeOfMembers holding the average age of club

members.
The concepts of grouping and the set concepts di�er in that a grouping explicitly deals with properties

and constraints of members as a whole in addition to set membership. Thus, whereas two sets are equal

if and only if they have the same members, two groupings with the same members (e.g., two tennis clubs)
may di�er in the value of some property associated with the grouping, such as the minimum age required

to be a member of the club.

Cardinality. In general, the grouping relationship constrains a set class to have at least one member
whereas the participation of a member in the grouping may be optional or mandatory. For example, the

cardinalities in Person(0,1)!!(1,n)PoliticalParty mean that a person may be a member of at most one
political party and that a political party has at least one member.

Value propagation. Grouping can be seen as a kind of aggregation. Hence, both upwards and down-
wards propagation are possible, although this is not clear from [Bro81] nor from [MPS95].

Composition. Grouping can be composed in hierarchies, where the member class of one grouping is
also the set class of another grouping. An example is TennisPlayer !!TennisClub !!TennisFederation.

Grouping allows multiplicity for both the member and the set classes. Examples are, respectively,
TennisClub Employee!!TradeUnion and Person!!Sponsors Organization.

Grouping is normally not transitive. For example, Book !!Library !!AcademicInstitutions does not
imply Book !!AcademicInstitutions.

11

Exclusiveness. Members can be exclusive and shared. A shared member can participate in any num-
ber of groupings at the same time. Thus, for example, members in TennisClub TennisPlayer and in
TennisClub Employee!!Department are shared if an employee can be a member of several tennis clubs,
and a member of department and a tennis club at the same time, respectively.

An exclusive member can only participate in a single grouping at a time. This is the case in Person
!!PoliticalParty, if two political parties cannot simultaneously \share" the same member. and in Aca-
demicSta� UnivSta� !!TechnicalSta�, if a sta� member cannot be a member of both the technical
sta� and the academic sta�.

Dependency. In general, the lifetime of members does not depend on that of their groupings and

conversely. However, a dependency may be implied by the cardinality constraints. For example, in
Employee(1,1)!!(1,20)Department, due to the cardinality (1,1), the deletion of a department implies the
deletion of its employees.

Member covering speci�es whether or not all instances of the member class are necessarily related
to an instance of the grouping class.

Partial covering means that there is at least one member that does not belong to any grouping. For
example, in Employee!!TennisClub, not all employees must be members of the tennis club.

Complete covering means that the grouping provides a complete covering of the member class. For

example, if TennisPlayer is a subclass of Employee, then in TennisPlayer!!TennisClub the grouping class
TennisClub covers all instances of the member class TennisPlayer.

3.6 Viewpoints

Viewpoint [Ber92, FKN+92, MPM96] is a binary relationship of pattern Class|{�View relating a class

and a particular view on it according to a speci�c perspective. The viewpoint mechanism appears in

various �elds of computer science under several terms [Myl98]. In software development, it appears
under the guises of workspaces, versions, and con�gurations [Kat90] for the support of cooperative work.
In the database �eld [AB91, Ber92], the view mechanism is used to present partial data to di�erent user

groups. In hypertext bases [PT93] and more general information bases [MPM96, MMP95], the notions
of perspectives and contexts have been used to decompose an information base in di�erent sub-bases.

In requirement engineering [FKN+92], viewpoints are used for structuring, organizing, and managing
system speci�cations and the development process. When viewpoints are used to decompose a base

system according to a given criterion, as in [FKN+92, MPM96, MMP95], the viewpoint mechanism has

the pattern BaseSystem
criterion

|{� SubSystem.
In the sequel, we focus only on the viewpoint mechanism in object database systems as proposed in

[GBCGM97]. According to [GBCGM97], a database schema is composed of:

� a base schema, that is, a collection of classes;
� a set of schema views derived from the base schema, to provide applications with a customized view
of data, one schema view for each application. A schema view is thus a collection of special classes

called views;
� derivation relationships, both at the class and the schema level, relating each view to the classes
(or views) it is derived from and relating each schema view to the base schema (or schema view) it
is derived from.

The rest of this section concentrates on the derivation relationship between a class and its view, that

is, the viewpoint mechanism of pattern Class |{�View. Views are subcategorized as object-generating
or object-preserving. The evaluation of a query associated with an object-generating view always returns

new objects, with new oids (for example if the view query contains a join operation). By contrast, the
evaluation of a query associated with an object-preserving view populates the view by extracting existing
objects from a class or a view, possibly, modifying their structure and behavior (for example if the view
query is a selection or projection operation). The view instances preserve the identi�ers of base objects,

instead of generating new identi�ers as required for object-generating views.
As an example, Figure 12 shows an object-preserving view Employee derived from class Professor and

an object-generating view Planning derived from classes Professor and Room. Note that an employee John

12

who works as a professor is an instance of Professor, while an instance of Planning is a new object derived
from an instance of Professor and an instance of Room.

Room

roomNo
course
day
period

Professor

firstName
lastName
office
courses

Employee

dependents
salary

address
time

Planning

professor
course
roomNo
day
period

. .

.viewpoint

viewpoint
viewpoint

Figure 12: An example of object-preserving view and object-generating view.

Cardinality. In general, the cardinality of a class with respect to its views is (0,n) for object-generating
views and (0,1) for object-preserving views. For example, in Professor|{�Employee a professor John may
appear as employee at most once. By contrast, the cardinality of a view regarding each of its corresponding
classes is always (1,1). For example, an employee John corresponds to exactly one instance of Professor.

Attribute propagation. A view, be it object-preserving or object-generating, inherits structure and

methods from its de�ning classes or views. However, a derived view could be considerably di�erent from
the base class (or view). Thus, new attributes/methods can be added, existing attributes/methods can

be hidden, the name of an attribute/method of a class can be changed, the domain of an attribute of a

class can be changed.

Composition. Viewpoints can be composed in hierarchies, where the view of one derivation relationship

is also the base class of another derivation. As an example the Employee view in Professor|{�Employee
can be re�ned into the view MarriedEmployee. Furthermore, classes or views can be re�ned into several
views and conversely a view can be derived from more than one class or view. For example, the Employee
view can be re�ned into MarriedEmployee and SingleEmployee, and the view MarriedEmployee can be
derived from both Employee and Couple.

Exclusiveness. For both object-preserving and object-generating views, two distinct instances of the

same class (or view) cannot share the same instance of a derived view. In particular, for object-generating
views that can be derived from more than one class (or view) such as Room|{�Planning�|{Professor
of Figure 12, an instance of the derived view Planning is necessarily shared by corresponding instances of

the base classes Professor and Room.

Dependency. The lifetime of view instances necessarily depends on that of their de�ning objects.
Thus, the deletion/modi�cation of an object, instance of a base class induces the deletion/modi�cation

of its derived objects, that are instances of the views derived from that base class. In Figure 12, when a
room is deleted from class Room, all the plannings referring to it should be deleted from class Planning.

Generalization versus Viewpoint. The view derivation relationship is orthogonal to generalization.

Views can be generalized in superviews in the same way that classes can be generalized in superclasses.
The main di�erence between the generalization hierarchies on ordinary classes and on views is that the
latter must take into account the query component of the view. This is due to the fact that, unlike a
class, a view is not explicitly instantiated; rather its population is derived from the population of its root

13

classes. Thus, the restriction must be imposed that the query of a view must be subsumed by the queries
of its superviews.

3.7 Generation

prodOrderNo
machineNo
productionDate
responsible

ProductionOrder

productNo
quantity

SalesOrder

salesOrderNo
issueDate

FinishedProduct

serialNo
unitPrice
deliveryDate

generation generation

Figure 13: Examples of generation.

Generation [GH92] is a binary relationship of pattern InputClass=)OutputClass with the meaning
that an instance (or a set of instances) of the input class generate(s) an instance (or a set of instances)
of the output class. In the example of Figure 13, sales orders generate production orders which in turn

generate �nished products.
In a generation, the input objects can be preserved or consumed. A transformation, denoted by

InputClass
�

=)OutputClass, occurs when all the input instances are consumed in the generation process.

A production, denoted by InputClass
�

=)OutputClass, takes place when all the input instances survive
the generation process. The example of Figure 13 shows two productions. Notice that it is also possible

that in a generation some objects are preserved while others are consumed.
The generation process, under both its transformation and production aspects, frequently appears in

chemical application domains where products are consumed to generate new ones or are only used as a

catalyst in a chemical reaction. It appears frequently also in production planning domains.

Cardinality. In general, generation requires that instances of the output classes be related to at least

one instance of the input classes. For instance, the generation ProductionOrder(0,n)=)(1,n)FinishedProduct
of Figure 13 means that every �nished product results from at least one production order while a given
production order may give rise to zero (when an order production fails) or several �nished products.

Attribute propagation. Values of some attributes of output entities depend on those of input entities.

For instance, in chemical processes, the quantity of generated products is determined from that of input
products. Also, in the generation of Figure 13, the date of execution of a production order could determine

the date of delivery of a �nished product.

Composition. Generations can be composed in hierarchies, where the output class of one generation
is also the input class of another generation, as shown in Figure 13. Generations can be recursive. For
example, in a cadastral application, a parcel may be split generating new smaller parcels or, on the
contrary, several parcels may be merged and generate a larger one. This can be modeled by a class Parcel
with a recursive generation.

Dependency. Unlike other generic relationships, for generation process the dependency of output
objects on their input objects and conversely does not hold, because output objects are new autonomous
products.

M:N generations. Most real-world reactions and production planning applications involveM objects

which interact to breed N other objects. An M:N generation, denoted fi1; : : : ; img
�

=)
fo1; : : : ; ong, is viewed as a 1:1 generation G, with a complex input object, I , aggregated from the

objects which are input into the production process, and a complex output object, O, aggregated from
the objects which emerge from the generation (i.e., G � I

�
=)O). In general, G, may be any kind of gen-

eration, although it is usually a transformation. As an example, in the transformation process fwoodA,

woodB, catalystg
�

=)fpaper, pulp, catalystg, both pulp and paper are generated from three input products:
two di�erent types of wood chips woodA and woodB, and a catalyst which survives the reaction.

14

Reversibility. Reversible generations require that no changes take place in the future which would
prevent the reversal of the generation. Irreversible generations, however, mean that the input objects
cannot be reached from the output objects. For example, if a mill order cannot be completed at one mill

due to machine breakdown, the conversion of the original sales order to the mill order can be reversed, the
current mill order invalidated, and a new mill order created to be executed by a di�erent mill. However,
once salt is produced, the process cannot be reversed to yield hydrochloric acid.

4 New Generic Relationships

4.1 Identi�cation

Conceptual modeling focuses on capturing and representing certain aspects of the real world relevant

to the functions of an information system. The central constructs in the building process of concep-
tual models are entities (or types, classes) representing important things of the application domain and
relationships representing associations among those things.

When building a conceptual model, it is relatively easy to identify adequate entities to capture real-
world objets: they directly correspond to the important concepts naturally manipulated by stakeholders

in the application domain. The research reviewed in this paper advocates the use of a rich repertoire of
relationships for modeling associations between entities. Thus, for the conceptual modeler, the choice of

appropriate relationships to associate objects is comparatively more diÆcult. Various possible choices of

relationships correspond to sometimes subtle di�erences in the shades of real-world semantics captured in
a conceptual model. For example, it can be argued that the association between students and employees

on the one hand and persons on the other hand is more adequately modeled as a role relationship than

as a generalization. As another example, the association between books and their book copies is better
modeled as a materialization than as an ad hoc relationship.

The generic relationships reviewed in Section 3 are largely application independent. They are general
abstraction patterns for structuring information across application domains. Intermediate between these

general patterns and application-speci�c relationships, generic relationships have also been de�ned to

�t speci�c application domains. For example, in hypermedia document management [KNS90, WA95], a
relationship BinaryDirectedLink relates two nodes (or a node and a link) of the hypermedia graph; copyOf

that relates a blueprint to its original document. Another interesting example deals with the domain of

architectural design [PMD95]. There, hasGeometry is a relationship that relates a symbolic object and
a geometric object; adjacentTo relates two objects not related by aggregation and whose distance is less
than a speci�c threshold; connectedTo is similar to adjacentTo, but the related objects have overlapping
volumes.

In practice, when deciding on which relationship best models an association, the modeler has to choose
between: (1) a new user-de�ned ad hoc relationship (like relationship worksFor in Employee{worksFor{
Employer), (2) a speci�c relationship derived from a generic relationship within the repertoire of available
generic relationships (such as the relationship Employee!ÆPerson derived from RoleClass!ÆObjectClass),
and (3) a speci�c relationship derived from a new generic relationship identi�ed in the application domain.

The research reviewed in this paper argues that option (2) should be preferred as much as possible.
Ad hoc relationships carry little built-in semantics and thus application semantics has to be largely ex-
pressed in application programs. New relationships can be identi�ed when the same pattern is repeatedly

encountered and it does not �t well the available generic relationships, but the decision to de�ne a new
generic relationship should be made with care. For example, some candidate generic relationships can be
best described as subcategories of already identi�ed relationships (like the subcategories of aggregation
discussed in, e.g., [KP97, Sto93, WCH87]).

4.2 De�nition

When a new generic relationship has been tentatively identi�ed, it must be well de�ned, that is, be
intuitively well understood, it should correspond to a signi�cant number of speci�c instances validated in
application domains, its semantics should be formalized, and it should be associated with an appropriate
graphical notation.

15

The intuitive semantics of a generic relationship is a broad intent about the duties of the relationship
in application domains, in the style of the short descriptions of Section 2.2. The formal semantics �ts
in two categories: the �rst one positions the relationship along the various characteristics reviewed in

Section 2.3 while the second characterizes the inherent semantics of the relationship, in particular in
terms of the semantics of creation, update, and deletion of objects involved in the relationship [KR94].

A graphical notation for a generic relationship includes a notation for participating classes and for
the relationship itself. Notations of a varying degree of detail can be de�ned for participation constraints
linked with cardinality (see, e.g., [KP97]).

4.3 Close Generic Relationships

The identi�cation and de�nition of new relationships should carefully explore and characterize their sim-
ilarities and interactions with existing relationships. This section illustrates the issue with two neighbor
relationships, generalization and the comparatively new role relationship.

Similarities and di�erences, illustrated by the example of Figure 14, include the following:

Person

(b)

EmployeeStudent

ObjectClassRoleClassSuperClass
(0,n)(1,1)

SubClass (1,1) (0,1)

isA roleOf

Person

(a)

Male Female

Figure 14: Generalization (a) versus role (b).

� Cardinalities. Each instance of a subclass (e.g., Male) is related to exactly one instance of the
superclass (e.g., Person) and each instance of the superclass is related to at most one instance of
the subclass.

On the other hand, each instance of the role class (e.g., Student) is related to exactly one instance
of the object class (e.g., Person) but, unlike generalization, each instance of the object class can be

related to any number of instances of the role class (depending on the maximal cardinality N at

the side of the object class).
� Object identity. An instance of the subclass has the same object identi�er oid as an instance of

the superclass. For example, the identity of John as Male is the same as that of John as Person.
Unlike generalization, an instance of the role class has its own role identi�er rid, di�erent from that
of all other instances of the role class and from the identi�ers of the instances of the object class.
For example, the identity of student John is di�erent from that of person John. Furthermore, if
John is registered in two universities, there will be one person with a given oid and two students

with two di�erent rids.
� Change of classes. In most models and systems, an instance of superclass A that is not an instance
of subclass B cannot become an instance of B. For example, in the partition of Figure 14(a), an

instance of Person that is not a Male cannot become a Male.
Contrary to generalization, an instance of object class A that is not an instance of role class B can
become an instance of B. For example, in the partition of Figure 14(b), an instance of Person that is
not a Student can become a Student and an instance of Person that is not an Employee can become
an Employee.
� Change of subclasses. An instance of a subclass in a partition of the superclass cannot become

an instance of another subclass of the partition. For example, in the partition of Figure 14(a), an
instance of Male cannot become an instance of Female. Instead, an instance of a given role class
in the partition of the object class can become an instance of another role class of the partition.

For example, in the partition of Figure 14(b), an instance of Student can become an instance of
Employee.

16

� Set of instances. When a subclass changes the set of its instances by creating new objects, then
its superclass also changes its instances. For example, the creation of a Male also creates a Person.
On the contrary, when a role class creates a new role, then the related object class does not change

its instances. For example, the creation of a new role for person John (e.g., John becomes an
employee or registers in a university) does not a�ect the instances of Person.
� Direct versus indirect instances. In some generalizations, a superclass is not introduced with
the purpose to be directly instantiated, but rather to be specialized by more speci�c subclasses.
For instance, John is not created as a direct instance of Person, but as an instance of Male, that
becomes an indirect instance of Person.
With roles, object classes can be directly instantiated by objects expected to play roles within the
speci�ed role classes. For instance, John is created as a direct instance of Person that can play roles
of Student and/or Employee.
� Inheritance. While subclasses inherit all properties and methods of their superclass, role classes
do not inherit properties and methods of their object class. Instead, instances of role classes access
properties and methods of their corresponding objects by delegation. Thus, generalization de�nes
the inheritance mechanism at the class level while role de�nes it at the instance level. We agree
with [GSR96] that, when objects change their type dynamically, it is more appropriate to apply
specialization and inheritance at the instance level.

5 Implementation of Generic Relationships

In conventional object models, relationships are implemented by class attributes whose domain is a related
class. Work on implementing speci�c relationships (see e.g., [AGO91, Bos96, DP94, DPW93, ER97,

HL90, Rum87]) has demonstrated problems and limitations of such pointer or reference technique for

representing relationships. Richer implementations essentially suggest, with varying degrees of precision
and completeness, to represent generic relationships as independent units that can be reused to declare

di�erent user-de�ned speci�c relationships.
Only a few implementations of generic relationships have been reported: parameterized class im-

plementations of role [RHS95] and aggregation [KP97], and metaclass implementations of aggregation
[HGP98, HGPK94], role [GSR96, KZ98], and materialization [DPZ99]. Materialization has been also
implemented in Logtalk [Zim97], and materialization and grouping in Telos [Dah98, MPS95].

This section reviews several mechanisms for implementing generic relationships: pointers or references,

layers, parameterized classes (genericity), and, with more detail, metaclasses.

5.1 Pointers

A simple implementation of a generic relationship consists in incorporating the relationship semantics into
its participating classes. For instance, to implement the aggregation Car�|Body, class Body is extended
with an attribute referring to Car objects and class Car is extended with an attribute referring to Body
objects.

Both classes should also be extended with all necessary methods for supporting the procedural seman-
tics and the integrity constraints of aggregation. Suppose that Car�|Body is an exclusive and dependent

aggregation, expressing that a body always belongs to exactly one car, and that, when deleting a car
from the database, the related body must also be deleted. Methods in both classes Car and Body should
enforce those constraints; this concerns constructor and destructor methods of both classes, as well as
methods updating the pointers implementing the relationship.

Thus, the pointer approach for implementing relationships presents at least two drawbacks: (1) ap-
plication classes will be more complex, as each class comprises properties for describing the class objects
and other properties to account for the semantics of all relationships in which the class participates; (2)
the semantics of a generic relationship is repeated for each of its concrete realizations.

5.2 Layers

The layer concept LAYOM [Bos96] is an extended object model that uses a concept of layer to

deal with relationships between objects. An object can be viewed as consisting of two parts, the kernel

17

part and the layer part encapsulating the kernel part. Layers can represent several aspects of an object
speci�cation. For example, a layer can be used to model constraints on the behavior of the object or
to extend the interface of the object without de�ning a new class for it. A layer has a type and a

con�guration part, and the behavior of the layer depends on their combination. Each layer encapsulates
its object such that each message sent to or by the object has to pass the layer. The layer can handle
the message various ways. It can delay, change, redirect or reject the message or it can decide to execute
the request by itself and to return a response.

Relationships as layers In LAYOM, generic and speci�c relationships are implemented by means of
layers. A relationship in LAYOM is any connection from one object (or class) Or to another object (or
class) Os that inuences the behavior of Or in some way. Note that this de�nition explicitly requires the
behavior of the object to be inuenced by the relation. Relationships that do not inuence the behavior

of the object are ignored by the layer technique. Also, bidirectional relationships have to be modeled as
two unidirectional relationships.

Relationships should be part of the object whose behavior is inuenced by the relationship. A rela-
tionship is not a separate object, but it should be modeled as an identi�able unit. Therefore, as for the
pointer implementation, all relationships of a class are implemented as a part of the class de�nition.

For example, according to [Bos96], part relationships are directed from the whole to the part, because
the behavior of wholes is viewed as extended by its parts and not vice versa. Therefore, the aggre-

gation between htheWholeClassi and hthePartClassi is represented by the layer type \hidenti�eri: partOf
(hthePartClassi)" which appears, under the layers clause, as a component of htheWholeClassi de�nition.
The name hidenti�eri distinguishes a layer among the other layers of the same class. To represent the

part relationship Car�|Body, the layer bPartc: partOf(Body) is associated with Car, meaning that the

composite Car has a part relationship with class Body. Upon instantiation of Car, layer bPartc is also
instantiated and the layer creates an instance of Body as a corresponding component, thereby reusing

the generic semantics. When a message is sent to an instance of class Car, say car#1, it has to pass the

layer bPartc. The layer rei�es the message and checks whether the selector matches one of the interface
elements of Body. If the message matches, it is forwarded to the instance of class Body, say body#1, that
is, the part of car#1, otherwise it is passed on to the encapsulated object, i.e., car#1.

Layers concentrate the semantics of a generic relationship in a single structure that is reused in appli-

cations by instantiation. However, generic relationships are made available as primitives only by system

administrators. Users can only reuse the generic semantics of prede�ned relationships and de�ne appli-
cation domain relationships. They cannot de�ne new relationships as primitives. Also relationships are

assumed to inuence the behavior of at least one class or object involved so that they can be represented

by layers as parts of classes inuenced by those relationships. This constraint excludes the possibility of
dealing with relationships independently of the classes involved.

5.3 Parameterized classes (genericity)

This approach has been investigated in our previous work [KP97] to implement in C++ the semantics of
a part relationship model.

For such an implementation, the genericity approach consists in de�ning one template4 class
PartRel<CmpsClass, CmpnClass, PropClass> abstracting all speci�c part relationships. The formal generic
parameters CmpsClass, CmpnClass and PropClass are types representing, respectively, the composite, the
component, and the set of properties characterizing the part relationship between CmpsClass and Cmpn-
Class. These types should be provided for speci�c realizations of the relationship. For example, the part re-
lationship between Car and its component Body is declared as being the class

PartRel<Car,Body,Car BodyPropClass> where the generic parameters, CmpsClass, CmpnClass, and Prop-
Class, are substituted by Car, Body, and Car BodyPropClass. Car BodyPropClass is a set of properties char-
acterizing the part relationship between Car and Body. Similarily, the part relationship Article|�Journal
is represented by the class PartRel<Journal,Article,Journal ArticlePropClass>.

So, the generic class PartRel<CmpsClass, CmpnClass, PropClass> is, rather than a class, a class pattern

covering an in�nite set of possible classes; we can obtain any one of these by providing speci�c parameters
corresponding to the formal generic parameters.

4Parameterized classes are called template classes in C++ and generic classes in Ei�el.

18

As demonstrated in [KP97], genericity enhances reusability since only one speci�cation is used, i.e.,
PartRel<CmpsClass,CmpnClass,PropClass>, for all realizations of the part relationship model. The gener-
icity approach has, however, at least one limitation. Methods de�ned in PartRel<CmpsClass, CmpnClass,
PropClass> can be applied only to terminal objects at the instance level. Genericity does not provide
facilities to manage data or answer questions relevant to the class level such as \what are all parts of class
Journal ?", \what are all composites of class Article ?", \what is the cardinality of Journal regarding its
componenet Article"., \what are all characteristics of class Article regarding its composite class Journal?".
To be able to ensure such requirements, classes must be treated as objects, which is possible only in

systems and languages supporting metaclasses.

5.4 Metaclass implementation of relationships

5.4.1 Metaclasses

In object models, classes describe the structure and behavior of their instances with (instance) attributes
and methods, respectively. Metaclasses [Coi87, KS95, MPM92] play the same role for classes as classes do
for their instances: they describe the structure and behavior of classes with class attributes and methods.

Metaclasses can be used to make a model extensible and exible, so that it can be tailored for

particular uses. In particular, they can be used for de�ning generic relationships. The semantics of a

generic relationship is de�ned by a structure of metaclasses that provides for de�ning and querying the
relationship, creating and deleting instances of participating classes, and so on. The metaclasses also

impose constraints on the transactions and interactions between classes and objects participating in the

relationship.
Application classes involved in a generic relationship are then created as instances of the metaclasses

representing the relationship. An application designer declares the desired semantics by choosing the
appropriate values for the di�erent characteristics of the relationship and for the parameters of the

methods supplied by the metaclass. The system then automatically enforces the chosen speci�cation.

The designer is thus alleviated of the burden of having to \hand code" the relationship semantics into
the methods of the participating classes. Section 5.4.4 illustrates these ideas by surveying a metaclass
implementation of materialization.

Metaclass systems do not have a common de�nition of the metaclass concept. In [DPZ99], we analyzed
a set of criteria accounting for the di�erences.

5.4.2 The data model of VODAK

This section gives an overview of the VODAK [Kla95] data model that will be used in the subsequent

sections to illustrate our metaclass implementation ideas.

VODAK Modeling Language (VML) separates the notions of class and object type. each class in a VML
schema is associated with exactly one object type, called its instance type, which de�nes the structure

and behavior of the class's instances.
In VML, classes are themselves objects that are instances of other classes referred to as metaclasses.

As with an ordinary class, a metaclass has an object type, called instance type, that describes its instances,
which are classes. Furthermore, a second object type, called instance-instance type, is associated with a
metaclass to specify the common structure and behavior for the instances of the instances of the metaclass.

Therefore, through its two associated object types, a VML metaclass inuences both its own instances,

which are classes, and the instances of those classes.

Usefulness of VML metaclasses. VML metaclasses are especially useful to integrate generic rela-
tionships. In fact, the full semantics of a generic relationship R concern both classes participating in R and
instances of those classes. Thus, it is more convenient to represent the semantics of generic relationship
R by means of a metaclass to which are attached two types: an instance-type, that provides structure and
behavior for the participating classes, and an instance-instance-type, that provides structure and behavior

for instances of instances of the metaclass.
Figure 15 shows a VML metaclass PartWholeClass that represents the semantics of a part relationship.

The two associated types are: PWInst-Type that describes the structure and behavior for the instances of

19

the metaclass (i.e., part and whole classes) and PWInstInst-Type that describes the structure and behavior
for the instances of instances of the metaclass (i.e., individual part and whole objects).

Figure 15 employes shading to illustrate the e�ect of PartWholeClass on its instances (e.g., Car and
Body) and on instances of its instances (e.g., myFiat and Body#1) are shown in Figure 15. Note that
instances of the class Car (resp. Body) are inuenced by both the instance type of Car (i.e., CarType)
(resp. BodyType) and the instance-instance type of the metaclass PartWholeClass (i.e., PWInst-Type).

This philosophy of modeling assumes that each class A starts with a minimal set of properties and
methods representing its structure and behavior as a neutral class. Then, if it is released later on, that

A and its instances are also concerned by a concept C whose semantics is captured by a metaclass MC,
then at that time A is just declared as instance of MC. As a result, the own properties and methods of A
will be augmented by properties and methods of MC's instance type and the structure and behavior of
A's instances will be augmented by properties and methods of MC's instance-instance type.

������
������
������
������

���
���
���
���

������
������
������
������

������
������
������
������

���������
���������
���������

���������
���������
���������

������
������
������
������

������
������
������
������
����
����
����
����

����
����
����
����

���������
���������
���������

���������
���������
���������

����
����
����
����

���
���
���

���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

PartWholeClass

PWInst-TypePWInstInst-Type

Body Car

CarTypeBodyType

Body#1 myFiat

Figure 15: E�ects of PartWholeClass on its instances (classes) and on instances of its instances.

5.4.3 Three metaclass approaches

PartWholeClass

(a) (b) (c)

Meta_PartOf

Car Body

PartClassWholeClass

Car Body Car Body

: instanceOf

Figure 16: (a) Two metaclasses (b) Single metaclass (c) Relationship metaclass.

Three metaclass approaches for implementing generic relationships are discussed and compared to
each other in [DPZ97]. They are illustrated in Figure 16 for the aggregation relationship.

The two-metaclass approach (Figure 16 (a)) consists in de�ning one metaclass for each role of the
generic relationship. Thus, aggregation is represented by two metaclasses WholeClass and PartClass
representing the composite and the component roles, respectively. For a speci�c relationship Car�|Body,
Car is created as instance of WholeClass and Body as instance of PartClass.

Two types are associated to each metaclass accounting, respectively, for the class- and instance-level
semantics of the role. Thus, through the instantiation link, Car inherits from its metaclass WholeClass
attributes and methods expressing the class- and instance-level semantics of the composite role. Body
inherits from PartClass in the same way.

The single-metaclass approach (Figure 16 (b)) consists in de�ning one metaclass for both roles of
the relationship. For example, aggregation is represented by a metaclass PartWholeClass. For a speci�c

20

relationship Car�|Body, both Car and Body are created as instances of PartWholeClass. Two types are
associated to the metaclass accounting, respectively, for the class- and instance-level semantics of both
roles of the relationship.

This approach has been used to implement aggregation in VODAK [HGPK94], to implement mate-
rialization [DPZ99], and it has been motivated in [KS95] to implement all generic relationships.

The relationship-metaclass approach (Figure 16 (c)) consists in de�ning one metaclass representing
the links between objects participating in the relationship. For example, Car and Body are instances of

a general system metaclass, while the aggregation Car�|Body is an instance of metaclass Meta PartOf,
that carries the semantics of aggregation. As in the other approaches, two types are associated with the
metaclass to represent the class- and instance-level semantics of the relationship.

5.4.4 Case study: Metaclass implementation of materialization

This section illustrates the single-metaclass approach, for implementing the materialization relationship
presented in Section 3.1. A more comprehensive presentation can be found in [DPZ99].

A metaclass AbstractConcreteClass is de�ned to capture the generic semantics of classes and objects
participating in materialization relationships. Two abstract data types are attached to the metaclass,

ACClass-InstType and ACClass-InstInstType, for the class- and the instance-level semantics, respectively.

The structure of both types is shown, in Figures 17 and 19, respectively.
The AbstractConcreteClass metaclass is made available to applications, as an extension of the data def-

inition mechanisms of the target system. An application can then invoke the generic template, by making

application classes A (CarModel) and C (Car), that are to participate in a materialization A|�C, instances
of the metaclass, as shown in Figure 18. Classes like A and C are both referred to as AbstractConcrete
(or AC) classes. Upon instantiation of the metaclass, speci�c information describing the characteristics
of materialization A|�C must also be speci�ed by the schema designer.

De�ne type ACClass-InstType
Attributes

theMatRelshps: fmatRelationshipTypeg
theAbstractClass:OID

Methods
defConcreteRelshps(someRelshps: fmatRelationshipTypeg);
defAbstractClass(aClass: OID);

makeAbstractObject(): OID;
makeConcreteObject(anObjectFacet: OID): OID;
destroy(anObject: OID): BOOL;

getMinCardinality (anAC Class: OID): integer;
getMaxCardinality (anAC Class: OID): integer;
isAbstractClassOf(anAC Class: OID): BOOL;
isConcreteClassOf(anAC Class: OID): BOOL;
getConcreteClasses(): fOIDg;
getAbstractClass(): OID;
getInhAttribType1(anAC Class: OID): fAttribute1-Defg;
getInhAttribType2(anAC Class: OID): fAttribute2-Defg;
getInhAttribType3(anAC Class: OID): fAttribute3-Defg;

END

DATATYPE matRelationshipType= [
theConcreteClass: OID,
cardinality: [min:integer, max:integer],
inhAttribType1: fAttribute-1Defg,
inhAttribType2: fAttribute-2Defg,
inhAttribType3: fAttribute-3Defg

]

Figure 17: Interface of ACClass-InstType.

Class-level semantics. Type ACClass-InstType endows the instances of AbstractConcreteClass, i.e.,
application classes like CarModel and Car, with structure and behavior consistent with the semantics of
materialization.

Figure 17 shows the interface of ACClass-InstType. Note that ACClass-InstType de�nes methods for
both the abstract and the concrete classes. By making an AC class an instance of the metaclass, all
methods are made available to the class, be it abstract or concrete. Appropriate error messages are issued
when incorrect method invocations are attempted. ACClass-InstType has two attributes: theMatRelshps,
meant for the abstract class, and theAbstractClass, for the concrete class. The �rst attribute is a set of
matRelationshipType structures describing characteristics of a speci�c materialization: the concrete class,
the cardinality at the abstract class side, and the propagation types for attributes of the abstract class.

21

For instance, if class Amaterializes in two classes B and C (i.e., B�|A|�C), then theMatRelshps associated
with A will contain two structures describing, respectively, the characteristics of materialization A|�B
and those of A|�C. The second attribute, theAbstractClass, is the abstract class corresponding to a given
concrete class. The generic object type is noted OID: it acts like a formal parameter to be substituted by
the name of an application class, when the metaclass is instantiated.

The methods of ACClass-InstType provide the following functions:

� de�ne the speci�c characteristics of a materialization, and declare the abstract and concrete roles
for AC classes with methods defConcreteRelshps and defAbstractClass;
� create abstract objects; when the constructor method makeAbstractObject creates an object, it also
creates its associated class facet as a subclass of the concrete class, and it propagates the attributes
of the object facet into the class facet (see Section 3.1);
� create concrete objects, with the constructor method makeConcreteObject, and relate them to their
associated abstract object;
� delete objects of AC classes, with the destructor method destroy, consistently with the semantics of
materialization;
� query AC classes about various aspects of their materialization relationship.

CLASS CarModel InstanceOf AbstractConcreteClass
Attributes

name: string;
sticker price: integer;
#doors:fintegerg;
eng size:fintegerg;
auto sound: fstringg;
special equip: fstringg;

Methods
setName(string);
getName(): string
get#doors():fintegerg
add#doors(integer)
remove#doors(integer)
. . .

END

CLASS Car InstanceOf AbstractConcreteClass
Attributes

manuf date: date;
serial# :integer;
owner: string;

Methods
setSerial#(integer)
setManufDate(date)
. . .

END

CarModel!defConcreteRelshps (f
[theConcreteClass=Car,
cardinality= [0,n],
inhAttribType1= fname, sticker priceg,
inhAttribType2= f[#doors, mono], [eng size, mono],

[auto sound, multi] g,
inhAttribType3= f[special equip, string]g]

g)
Car!defAbstractClass (CarModel)

Figure 18: Materialization CarModel|�Car.

As an example, Figure 18 shows how the materialization CarModel|�Car is established. Both CarModel
and Car are declared as instances of AbstractConcreteClass. Figure 18 also shows the initializations
that give a value to attributes theMatRelshps of CarModel and theAbstractClass of Car. The argument

of defConcreteRelshps speci�es that: the concrete class related to CarModel is Car; the cardinality for
CarModel is (0; n); name and sticker price propagate with Type1; #doors and eng size both propagate with
Type2 and each produces a monovalued instance attribute, while auto sound produces, also with Type2, a
multivalued instance attribute; special equip generates, with Type3, new instance attributes of type string.

Querying a materialization hierarchy. Materialization relationships can be queried with the access
methods shown in Figure 17.

Methods getMinCardinality and getMaxCardinality give, respectively, the minimal and the maximal
cardinalities for the target abstract class with respect to its concrete class passed in the anAC Class
parameter.

Methods isAbstractClassOf and isConcreteClassOf test whether the target class is a direct abstract
(resp., concrete) class corresponding to the concrete (resp., abstract) class denoted by the anAC Class pa-
rameter. For example, CarModel|�isAbstractClassOf(Car) returns True. Similarly, getAbstractClass and
getConcreteClasses return the set of direct abstract (resp., concrete) classes related to the target class.

22

These methods query only one level of materialization at a time. For example,
CarModel!getConcreteClasses() returns the concrete classes of CarModel, i.e., fCarg.

The last three methods (getInhAttribType1/Type2/Type3) are provided to access propagation types of

attributes.

Instance-level semantics is provided by type ACClass-InstInstType, whose interface is shown in Fig-
ure 19.

De�ne type ACClass-InstInstType
Attributes

theConcreteObjects:fOIDg;
theAbstractObject:OID;

Methods
addConcreteObject (aConcreteObject: OID) : BOOL;
setAbstractObject (anAbstractObject: OID);
removeConcreteObject (aConcreteObject: OID) : BOOL;
removeAbstractObject (anAbstractObject: OID);
getConcreteObjects () : fOIDg;
getAbstractObject() : OID;

END

Figure 19: Interface for ACClass-InstInstType.

ACClass-InstInstType has two attributes, theConcreteObjects and theAbstractObject. As a concrete class
has cardinality (1; 1) with respect to its abstract class, a concrete object is always associated with a single

abstract object in theAbstractObject. Attribute theConcreteObjects contains all the concrete objects of an
abstract object. They can be of di�erent classes, when the abstract class materializes in more than one
concrete class.

TheMethod part de�nes a set of methods for creating, suppressing, and querying materialization links.
Note that methods addConcreteObject, setAbstractObject, removeConcreteObject, and removeAbstractOb-
ject are only invoked in the context of object creation and destruction by methods of ACClass-InstType.

Establishing materialization connections between instances. A connection between an abstract

instance a and a concrete instance c is established by inserting c into theConcreteObjects set associated
with a (a!addConcreteObject(c)) and assigning a to attribute theAbstractObject of c
(c!setAbstractObject(a)). A Boolean value is returned by addConcreteObject to report success or failure.
Failure occurs when the classes A of a and C of c are not linked by a materialization A|�C or if attaching

c to a would violate the maximal cardinality at the A side.

Deletion of materialization connections between instances. To break a connection between

abstract object a and concrete object c, c is removed from theConcreteObjects set associated to a and
attribute theAbstractObject attribute associated to c is set to null.

Like addConcreteObject, removeConcreteObject returns a Boolean value to indicate success or failure.
Failure occurs when a and c are not linked by a materialization or if deletion would violate the minimal
cardinality at the A side.

Querying materialization connections between instances. Links between abstract and concrete
instances can be queried. Method getConcreteObjects returns all the concrete objects of an abstract
object a (the contents of theConcreteObjects attribute). Method getAbstractObject returns the value of

attribute theAbstractObject.

5.4.5 Interaction between Generic Relationships

Classes commonly participate in several generic relationships. As an example, Figure 20 shows class
Car involved in four generic relationships: a Car is a specialization of Vehicle, a composite with a Body
component, a materialization of a more abstract class CarModel, and a member of class Fleet describing
sets of cars. This section examines how interacting generic relationships are implemented in the three

23

metaclass approaches. We take the example of class Car involved in an aggregation and a materialization
relationships.

Vehicle

Car

Fleet

aggregation

Body*
materialization

CarModel

generalization

grouping

Figure 20: Interacting generic relationships.

Car CarModelBody

(b) (c)(a)

* **

Meta_MaterMeta_PartOfAbstractConcreteClassPartWholeClass

Body Car CarModel

WholeClass ConcreteClass

Body Car CarModel

: instanceOf

Figure 21: Metaclasses for interacting generic relationships.

The two-metaclass approach. The materialization relationship is represented by metaclasses Ab-
stractClass and ConcreteClass corresponding to the abstract and concrete roles. Similarly, the aggregation

relationship is represented by metaclasses PartClass and WholeClass. As a materialization of CarModel
and a composite of Body, Car is created as an instance of both WholeClass and ConcreteClass, as in Figure

21 (a). Thus, such a solution is allowed only in systems supporting multiple classi�cation [BG95].

The single-metaclass approach. As shown in Figure 21 (b), materialization is implemented by meta-

class AbstractConcreteClass for both the abstract and concrete roles. Similarly, aggregation is represented
by metaclass PartWholeClass. As a materialization of Vehicle and a composite of Body, Car is created as

an instance of both AbstractConcreteClass and PartWholeClass. Thus, this approach also requires multiple
classi�cation for implementing interacting generic relationships.

The relationship-metaclass approach. As shown in Figure 21 (c), materialization and aggregation
are represented, respectively, by metaclasses Meta Mater and Meta PartOf that abstract relationships in-
stances. Thus, multiple classi�cation is not needed with shared classes like Car, since CarModel|�Car
is created as an instance of Meta Mater and Car�|Body is created, independently, as an instance of
Meta PartOf.

Multiple classi�cation versus multiple inheritance. The usual approach to deal with interact-
ing generic relationships is multiple inheritance [KS95]. As an example, for representing in the single-
metaclass approach class Car involved in both a materialization and an aggregation, multiple inheritance
leads to de�ning a new metaclass, say Mater&PartOf, as a subclass of both AbstractConcreteClass and
PartWholeClass. Thus, Car is created as instance of Mater&PartOf avoiding multiple classi�cation.

This solution presents, however, some drawbacks: (i) intersection classes like Mater&PartOf are com-
plex, (ii) there is a combinatorial explosion of intersection classes when several generic relationships are
subject to interaction, (iii) modi�cations in the set of relationships in which a class participates require

substantial modi�cations in the structure of associated metaclasses.

24

6 Conclusion

Generic relationships play a central role for organizing data in the analysis phase of problem resolution. In
addition to a few classical generic relationships (generalization, classi�cation, and aggregation), research
in conceptual modeling has studied new generic relationships (like materialization, role, generation, and
ownership) that naturally model complex situations whose semantics escapes direct representation with
classical relationships.

This paper has analyzed the concept of generic relationships and characterized their common se-
mantics along several important dimensions like class and instance semantics, composition, multiplicity,
exclusiveness, and sharing. Several generic relationships were reviewed to illustrate how they contribute
to enhancing the expressiveness of information models.

The paper has also reviewed mechanisms to implement generic relationships, namely pointers or
references, layers, parameterized classes (genericity), and, with more detail, metaclasses. Metaclasses
allow to capture structure and behavior associated with a generic relationship independently of speci�c
application classes participating in it. Broadly speaking, the metaclass implementation of generic rela-
tionships consists in de�ning the semantics of a given generic relationship once and for all in a structure
of metaclasses, that provide for de�ning and querying the relationship, creating and deleting instances of

participating classes, and so on. Application classes involved in a generic relationship are then created as

instances of the metaclasses representing the relationship. Three metaclass approaches for implementing
generic relationships have been sketched and one of them has been illustrated by the implementation of

the materialization relationship.

References

[AB91] S. Abiteboul and A. Bonner. Objects and views. In J. Cli�ord and R. King, editors,

Proc. of the ACM SIGMOD Int. Conf. on Management of Data, SIGMOD'91, pages
238{247, Denver, Colorado, 1991. SIGMOD Record 20(2).

[ABGO93] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An object data model with roles.

In R. Agrawal, S. Baker, and D. Bel, editors, Proc. of the 19th Int. Conf. on Very Large

Data Bases, VLDB'93, pages 39{51, Dublin, Ireland, 1993. Morgan Kaufmann.

[AGO91] A. Albano, G Ghelli, and R. Orsini. A relationship mechanism for a strongly typed
object-oriented database programming language. In G.M. Lohman, A. Sernadas, and

R. Camps, editors, Proc. of the 17th Int. Conf. on Very Large Data Bases, VLDB'91,

pages 565{575, Barcelona, Catalonia, Spain, 1991. Morgan Kaufmann.

[AHLP95] E. Andono�, G. Hubert, and A. Le Parc. Modeling inheritance, composition and rela-
tionship links between objects, object versions and class versions. In J. Iivari, K. Lyyti-

nen, and M. Rossi, editors, Proc. of the 7th Int. Conf. on Advanced Information Systems

Engineering, CAiSE'95, LNCS 932, pages 96{111, Jyvaskyla, Finland, 1995. Springer-
Verlag.

[AHPZ96] E. Andono�, G. Hubert, A. Parc, and G. Zuruh. Integrating versions in the OMT
models. In B. Thalheim, editor, Proc. of the 15th Int. Conf. on Conceptual Modeling,

ER'96, LNCS 1157, pages 472{487, Cottbus, Germany, 1996. Springer-Verlag.

[Ber92] E. Bertino. A view mechanism for object-oriented databases. In A. Pirotte, C. Delobel,
and G. Gottlob, editors, Proc. of the 3rd Int. Conf. on Extending Database Technology,

EDBT'92, LNCS 779, pages 136{151, Vienna, Austria, 1992. Springer-Verlag.

[BG95] E. Bertino and G. Guerrini. Objects with multiple most speci�c classes. In W.G. Oltho�,
editor, Proc. of the 9th European Conf. on Object-Oriented Programming, ECOOP'95,

LNCS 952, pages 102{126, Aarhus, Denmark, 1995. Springer-Verlag.

[Bos96] J. Bosch. Relations as object model components. Journal of Programming Languages,
4:39{61, 1996.

25

[Bro81] M. Brodie. Association: A database abstraction. In P.P. Chen, editor, Entity-

Relationship Approach to Information Modeling and Analysis, pages 583{608. North-
Holland, 1981.

[CMV96] P. Constantopoulos, J. Mylopoulos, and Y. Vassiliou, editors. Proc. of the 8th Int. Conf.

on Advanced Information Systems Engineering, CAiSE'96, LNCS 1080, Crete, Greece,
1996. Springer-Verlag.

[Coi87] P. Cointe. Metaclasses are �rst class: The ObjVlisp model. In Meyrowitz [Mey87], pages

156{167. ACM SIGPLAN Notices 22(12), 1987.

[CZ97] W.W. Chu and G. Zhang. Associations and roles in object-oriented modeling. In D.W.
Embley and R.C. Goldstein, editors, Proc. of the 16th Int. Conf. on Conceptual Model-

ing, ER'97, LNCS 1331, pages 257{270, Los Angeles, California, 1997. Springer-Verlag.

[Dah98] M. Dahchour. Formalizing materialization using a metaclass approach. In B. Pernici
and C. Thanos, editors, Proc. of the 10th Int. Conf. on Advanced Information Systems

Engineering, CAiSE'98, LNCS 1413, pages 401{421, Pisa, Italy, June 1998. Springer-

Verlag.

[DP94] O. D��az and N.W. Paton. Extending ODBMSs using metaclasses. IEEE Software, pages

40{47, May 1994.

[DPW93] M. Doherty, J. Peckham, and V.F. Wolfe. Implementing relationships and constraints
in an object-oriented database using a monitor construct. In N.W. Paton and M.H.

Williams, editors, Proc. of the Int. Workshop on Rules in Database Systems, RIDS'93,

LNCS 1312, pages 347{363, Edinburgh, Scotland, 1993. Springer-Verlag.

[DPZ97] M. Dahchour, A. Pirotte, and E. Zim�anyi. Metaclass implementation of generic rela-
tionships. Technical Report YEROOS TR-97/25, IAG-QANT, Universit�e catholique de

Louvain, Belgium, 1997. Submitted for publication.

[DPZ99] M. Dahchour, A. Pirotte, and E. Zim�anyi. Materialization and its metaclass implemen-

tation. Technical Report YEROOS TR-99/01, IAG-QANT, Universit�e catholique de
Louvain, Belgium, February 1999. To be published in IEEE Transactions on Knowledge

and Data Engineering.

[EPdOVdC+94] N. Edelweiss, J. Palazzo de Oliveira, J. Volkmer de Castilho, E. Peressi, A. Montanari,

and B. Pernici. T-ORM: Temporal aspects in objects and roles. In Proc. of the 1st Int.

Conf. on Object Role Modeling, ORM-1, 1994.

[ER97] B.K. Ehlmann and G.A. Riccardi. An integrated and enhanced methodology for mod-

eling and implementing object relationships. Journal of Object-Oriented Programming,
10(2):47{55, May 1997.

[FKN+92] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. Viewpoints:
a framework for integrating multiple perspectives in system development. International

Journal of Software Engineering and Knowledge Engineering, 2(1):31{57, 1992.

[GBCGM97] G. Guerrini, E. Bertino, B. Catania, and J. Garc��a-Molina. A formal model of views for
object-oriented database systems. Theory and Practice of Object Systems, 3(3):157{183,
1997.

[GH92] R. Gupta and G. Hall. An abstraction mechanism for modeling generation. In F. Gol-
shani, editor, Proc. of the 8th Int. Conf. on Data Engineering, ICDE'92, pages 650{658,
Tempe, Arizona, 1992. IEEE Computer Society.

[GS94] R.C. Goldstein and V.C. Storey. Materialization. IEEE Trans. on Knowledge and Data

Engineering, 6(5):835{842, October 1994.

26

[GSR96] G. Gottlob, M. Schre, and B. R�ock. Extending object-oriented systems with roles.
ACM Trans. on OÆce Information Systems, 14(3):268{296, 1996.

[HG91] G. Hall and R. Gupta. Modeling transition. In Proc. of the 7th Int. Conf. on Data

Engineering, ICDE'91, pages 540{549, Kobe, Japan, 1991. IEEE Computer Society.

[HGP98] M. Halper, J. Geller, and Y. Perl. An OODB part-whole model: Semantics, notation,
and implementation. Data & Knowledge Engineering, 27(1):59{95, May 1998.

[HGPK94] M. Halper, J. Geller, Y. Perl, and W. Klas. Integrating a part relationship into an open
OODB system using metaclasses. In N.R. Adam, B.K. Bhargava, and Y. Yesha, editors,
Proc. of the 3rd Int. Conf. on Information and Knowledge Management, CIKM'94,
pages 10{17, Gaithersburg, Maryland, 1994. ACM Press.

[HL90] S. Hwang and S. Lee. An object-oriented approach to modelling relationships and
constraints based on abstraction concept. In A.M. Tjoa and R. Wagner, editors, Proc.
of the Int. Conf. on Database and Expert Systems Applications, DEXA'90, pages 30{34,
Vienna, Austria, 1990. Springer-Verlag.

[HPYG95] M. Halper, Y. Perl, O. Yang, and J. Geller. Modeling business applications with the
OODB ownership relationship. In R.S. Freedman, editor, Proc. of the 3rd Int. Conf. on

AI Applications on Wall Street, pages 2{10, New York, June 1995.

[Kat90] R.H. Katz. Towards a uni�ed framework for version modeling in engineering databases.
ACM Computing Surveys, 22(4):375{408, December 1990.

[KBG89] W. Kim, E. Bertino, and J. Garza. Composite objects revisited. In J. Cli�ord, B.G.

Lindsay, and D. Maier, editors, Proc. of the ACM SIGMOD Int. Conf. on Management

of Data, SIGMOD'89, pages 337{347, Portland, Oregon, 1989. SIGMOD Record 18(2).

[Kla95] W. Klas. VODAK V4.0 User Manual. Technical Report TR 910, Arbeitspapiere der
GMD, April 1995.

[KNS90] W. Klas, E. Neuhold, and M. Schre. Using an object-oriented approach to model

multimedia data. Computer Communications, 13(4):204{216, 1990.

[KP97] M. Kolp and A. Pirotte. An aggregation model and its C++ implementation. In

M.E. Orlowska and R. Zicari, editors, Proc. of the 4th Int. Conf. on Object-Oriented

Information Systems, OOIS'97, pages 211{224, Brisbane, Australia, November 1997.

[KR94] H. Kilov and J. Ross. Information Modeling: An Object-Oriented Approach. Prentice

Hall, 1994.

[KS95] W. Klas and M. Schre. Metaclasses and their application. LNCS 943. Springer-Verlag,

1995.

[KZ98] M. Kolp and E. Zim�anyi. Prolog-based algorithms for database design. Technical Report
YEROOS TR-98/06, IAG-QANT, Universit�e catholique de Louvain, Belgium, 1998.
Published as P-98/01.

[LD94] Q. Li and G. Dong. A framework for object migration in object-oriented databases.

Data & Knowledge Engineering, 13(3):221{242, 1994.

[Lie86] H. Lieberman. Using prototypical objects to implement shared behavior in object ori-
ented systems. In N.K. Meyrowitz, editor, Proc. of the Conf. on Object-Oriented Pro-

gramming Systems, Languages and Applications, OOPSLA'86, pages 214{223, Portland,
Oregon, 1986. ACM SIGPLAN Notices 21(11), 1986.

[LM96] Y. Lahlou and N. Mouaddib. Relaxing the instantiation link: Towards a content-based
data model for information retrieval. In Constantopoulos et al. [CMV96], pages 540{561.

27

[Mat88] N.M. Mattos. Abstraction concepts: The basis for data and knowledge modelling. In
Carlo Batini, editor, Proc. of the 7th Int. Conf. on the Entity-Relationship Approach,

ER'88, pages 473{492, Rome, Italy, 1988.

[MBJK90] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: Representing knowl-

edge about informations systems. ACM Trans. on OÆce Information Systems, 8(4):325{
362, 1990.

[Mey87] N.K. Meyrowitz, editor. Proc. of the 2nd Conf. on Object-Oriented Programming Sys-

tems, Languages and Applications, OOPSLA'87, Orlando, Florida, 1987. ACM SIG-
PLAN Notices 22(12), 1987.

[MMP95] J. Mylopoulos and R. Motschnig-Pitrig. Partitioning information bases with contexts.
In Proc. 3rd Int. Conf. On Cooperative Information Systems, Vienna, Austria, 1995.

[MP96] R. Motschnig-Pitrik. Analyzing the notions of attribute, aggregate, part and member
in data/knowledge modeling. Journal of Systems Software, 33:113{122, 1996.

[MPK96] R. Motschnig-Pitrik and J. Kaasboll. Part-whole relationship categories and their appli-
cation in object-oriented analysis. In Proc. of the 5th Int. Conf. on Information System

Development, ISD'96, 1996.

[MPM92] R. Motschnig-Pitrik and J. Mylopoulos. Classes and instances. International Journal of

Intelligent and Cooperative Information Systems, 1(1):61{92, 1992.

[MPM96] R. Motschnig-Pitrik and J. Mylopoulos. Semantics, features, and applications of the
viewpoint abstraction. In Constantopoulos et al. [CMV96], pages 514{539.

[MPS95] R. Motschnig-Pitrik and V.C. Storey. Modelling of set membership: The notion and the
issues. Data & Knowledge Engineering, 16(2):147{185, 1995.

[Myl98] J. Mylopoulos. Information modeling in the time of the revolution. Information Systems,

23(3{4):127{155, 1998.

[Odb94] E. Odberg. Category classes: Flexible classi�cation and evolution in object-oriented

databases. In G. Wijers, S. Brinkkemper, and T. Wasserman, editors, Proc. of the 6th

Int. Conf. on Advanced Information Systems Engineering, CAiSE'94, LNCS 811, pages
406{420, Utrecht, The Netherlands, 1994. Springer-Verlag.

[PMD95] J. Peckham, B. MacKellar, and M. Doherty. Data model for extensible support of

explicit relationships in design databases. Very Large Data Bases Journal, 4:157{191,

1995.

[PT88] W.D. Potter and R.P. Trueblood. Traditional, semantic, and hypersemantic approaches
to data modeling. IEEE Computer, 21(6):53{62, June 1988.

[PT93] V. Prevelakis and D. Tsichritzis. Perspectives on software development environments. In
C. Rolland, F. Bodart, and C. Cauvet, editors, Proc. of the 5th Int. Conf. on Advanced

Information Systems Engineering, CAiSE'93, LNCS 685, pages 586{600, Paris, France,

1993. Springer-Verlag.

[PZMY94] A. Pirotte, E. Zim�anyi, D. Massart, and T. Yakusheva. Materialization: a powerful and
ubiquitous abstraction pattern. In J. Bocca, M. Jarke, and C. Zaniolo, editors, Proc.
of the 20th Int. Conf. on Very Large Data Bases, VLDB'94, pages 630{641, Santiago,
Chile, 1994. Morgan Kaufmann.

[RHS95] D.W. Renouf and B. Henderson-Sellers. Incorporating roles into MOSES. In C. Min-
gins and B. Meyer, editors, Proc. of the 15th Conf. on Technology of Object-Oriented

Languages and Systems, TOOLS 15, pages 71{82, 1995.

[Rum87] J. Rumbaugh. Relations as semantic constructs in an object-oriented language. In

Meyrowitz [Mey87], pages 466{481. ACM SIGPLAN Notices 22(12), 1987.

28

[Sto93] V.C. Storey. Understanding semantic relationships. Very Large Data Bases Journal,
2(4):455{488, 1993.

[WA95] J. W�asch and K. Aberer. Flexible design and eÆcient implementation of a hypermedia
document database system by tailoring semantic relationships. Technical Report TR

908, Arbeitspapiere der GMD, IPSI, Darmstadt, Germany, April 1995.

[WCH87] M.E. Winston, R. ChaÆn, and D. Herrmann. A taxonomy of part-whole relations.
Cognitive Science, 11:417{444, 1987.

[WCL97] R.K. Wong, H.L. Chau, and F.H. Lochovsky. A data model and semantics of objects
with dynamic roles. In A. Gray and P.-A. Larson, editors, Proc. of the 13th Int. Conf. on
Data Engineering, ICDE'97, pages 402{411, Birmingham, UK, 1997. IEEE Computer
Society.

[WDJS95] R.J. Wieringa, W. De Jonge, and P. Spruit. Using dynamic classes and role classes to
model object migration. Theory and Practice of Object Systems, 1(1):61{83, 1995.

[YHGP94] O. Yang, M. Halper, J. Geller, and Y. Perl. The OODB ownership relationship. In

D. Patel, Y. Sun, and S. Patel, editors, Proc. of the Int. Conf. on Object-Oriented

Information Systems, OOIS'94, pages 278{291, London, UK, 1994. Springer-Verlag.

[YM94] E. Yu and J. Mylopoulos. From E-R to A-R: Modelling strategic actor relationships for
business process reengineering. In P. Loucopoulos, editor, Business Modeling and Re-

Engineering, Proc. of the 13th Int. Conf. on the Entity-Relationship Approach, ER'94,

LNCS 881, pages 548{565, Manchester, UK, 1994. Springer-Verlag.

[Zim97] E. Zim�anyi. Implementing materialization in Logtalk. Technical Report YEROOS TR-

97/09, Laboratoire de Bases de Donn�ees, D�epartement d'Informatique, Ecole Polytech-
nique F�ed�erale de Lausanne, Switzerland, April 1997.

29

